Biodiv Sci ›› 2022, Vol. 30 ›› Issue (12): 22575. DOI: 10.17520/biods.2022575
Special Issue: 土壤生物与土壤健康; 昆虫多样性与生态功能
• Original Papers • Previous Articles Next Articles
Jianwei Cheng1,2, Yadong Wang2, Yanan Wang2, Ying Li2, Ying Guo2, Zheng Bai2, Xinmin Liu3, Frank Yonghong Li2,*()
Received:
2022-10-10
Accepted:
2022-11-28
Online:
2022-12-20
Published:
2022-12-08
Contact:
*E-mail: lifyhong@126.com
Jianwei Cheng, Yadong Wang, Yanan Wang, Ying Li, Ying Guo, Zheng Bai, Xinmin Liu, Frank Yonghong Li. Effects of soil macro- and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe[J]. Biodiv Sci, 2022, 30(12): 22575.
处理 Treatments | 粪干重 Dry dung mass (g) | 隔离网孔隙大小The size of the mesh hole | 隔离土壤动物类型 The type of soil fauna excluded |
---|---|---|---|
CK | 0 | 无隔离网 No wire-mesh-cage | 无 No |
T0 | 40 | 0.425 mm | 粪居型和掘洞型粪金龟和中型土壤动物 Dweller and tunneler dung beetle and soil meso-fauna |
T1 | 40 | 1 mm | 粪居型和掘洞型粪金龟 Dweller and tunneler dung beetle |
T2 | 40 | 2 mm | 掘洞型粪金龟 Tunneler dung beetle |
T3 | 40 | 无隔离网 No wire-mesh-cage | 无 No |
Table 1 Experimental design of different dung arthropod treatments
处理 Treatments | 粪干重 Dry dung mass (g) | 隔离网孔隙大小The size of the mesh hole | 隔离土壤动物类型 The type of soil fauna excluded |
---|---|---|---|
CK | 0 | 无隔离网 No wire-mesh-cage | 无 No |
T0 | 40 | 0.425 mm | 粪居型和掘洞型粪金龟和中型土壤动物 Dweller and tunneler dung beetle and soil meso-fauna |
T1 | 40 | 1 mm | 粪居型和掘洞型粪金龟 Dweller and tunneler dung beetle |
T2 | 40 | 2 mm | 掘洞型粪金龟 Tunneler dung beetle |
T3 | 40 | 无隔离网 No wire-mesh-cage | 无 No |
Fig. 2 Effects of soil fauna on the mass loss of animal dung over a 1-year period. (a) Horse-dry; (b) Cattle-dry; (c) Horse-wet; (d) cattle-wet. The bar graph shows the change in the mass loss of animal dung under different soil fauna treatments at the end of decomposition period. T0, Dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, Dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, Dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, Exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using * and different lowercase letters (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
影响因素 Factors | 干粪质量损失 DM | 湿粪质量损失 WM | 粪碳含量 DC | 粪氮含量 DN | 隔离系统微 生物呼吸MR | 土壤微生物 呼吸SR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | df | F | df | F | df | F | df | F | df | F | |
畜粪类型 D | 1 | 2.01 | 1 | 161.23*** | 1 | 183.33*** | 1 | 0.14 | 1 | 20.11*** | 1 | 23.65*** |
土壤动物 S | 3 | 1.59 | 3 | 3.04* | 3 | 30.27*** | 3 | 43.52*** | 3 | 1.64 | 4 | 13.26*** |
分解时间 T | 5 | 50.55*** | 5 | 218.78*** | 3 | 38.96*** | 3 | 17.70*** | 8 | 200.21*** | 4 | 108.19*** |
畜粪类型 × 土壤动物 D × S | 3 | 3.58* | 3 | 3.82** | 3 | 1.49 | 3 | 5.46** | 3 | 1.25 | 4 | 0.43 |
畜粪类型 × 分解时间 D × T | 5 | 4.69*** | 5 | 20.77*** | 3 | 2.82* | 3 | 0.50 | 8 | 4.06*** | 4 | 3.05* |
土壤动物 × 分解时间 S × T | 15 | 0.55 | 15 | 4.49*** | 9 | 2.59* | 9 | 2.74** | 24 | 0.82 | 16 | 5.23*** |
畜粪类型 × 土壤动物 × 分解时间 D × S × T | 15 | 0.94 | 15 | 0.93 | 9 | 1.82 | 9 | 0.87 | 24 | 0.53 | 16 | 1.38 |
Table 2 Results (F-values) of a repeated-measures ANOVA on the effects of dung type (D), soil fauna (S) and time of measurement (T) on dry (DM) and wet (WM) dung mass loss, dung carbon (DC) and nitrogen (DN) contents, the mesocosm microbial respiration (MR) and soil microbial respiration (SR)
影响因素 Factors | 干粪质量损失 DM | 湿粪质量损失 WM | 粪碳含量 DC | 粪氮含量 DN | 隔离系统微 生物呼吸MR | 土壤微生物 呼吸SR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | df | F | df | F | df | F | df | F | df | F | |
畜粪类型 D | 1 | 2.01 | 1 | 161.23*** | 1 | 183.33*** | 1 | 0.14 | 1 | 20.11*** | 1 | 23.65*** |
土壤动物 S | 3 | 1.59 | 3 | 3.04* | 3 | 30.27*** | 3 | 43.52*** | 3 | 1.64 | 4 | 13.26*** |
分解时间 T | 5 | 50.55*** | 5 | 218.78*** | 3 | 38.96*** | 3 | 17.70*** | 8 | 200.21*** | 4 | 108.19*** |
畜粪类型 × 土壤动物 D × S | 3 | 3.58* | 3 | 3.82** | 3 | 1.49 | 3 | 5.46** | 3 | 1.25 | 4 | 0.43 |
畜粪类型 × 分解时间 D × T | 5 | 4.69*** | 5 | 20.77*** | 3 | 2.82* | 3 | 0.50 | 8 | 4.06*** | 4 | 3.05* |
土壤动物 × 分解时间 S × T | 15 | 0.55 | 15 | 4.49*** | 9 | 2.59* | 9 | 2.74** | 24 | 0.82 | 16 | 5.23*** |
畜粪类型 × 土壤动物 × 分解时间 D × S × T | 15 | 0.94 | 15 | 0.93 | 9 | 1.82 | 9 | 0.87 | 24 | 0.53 | 16 | 1.38 |
Fig. 3 Effects of soil fauna on the carbon (C) and nitrogen (N) contents of horse dung (a, c) and cattle dung (b, d) over a 1-year period. T0, Dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, Dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, Dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, Exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
Fig. 4 Microbial respiration (μmol·m?2·s?1) from the mesocosms that contain dung and soil (a: horse, b: cattle) and soil only [after horse dung (c) and cattle dung (d) is removed] under different soil fauna treatments over a 1-year period. CK, Soil only, no dung nor soil fauna; T0, Dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, Dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, Dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, Exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
Fig. 5 Effects of soil fauna on soil properties at day 30 of the experimental period. CK, Soil only, no dung nor soil fauna; T0, dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using different lower letters (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons). Different uppercase letters indicate significant difference between cattle dung and horse dung at P < 0.05, after using independent sample t test for post hoc comparisons.
[1] |
Cheng JW, Li FY, Wang YD, Wang YN, Liu XM, Zhang JZ, Wang ZY, Li YL, Wang H, Yang ZP, Potter MA (2022) Dweller and tunneler dung beetles synergistically accelerate decomposition of cattle and horse dung in a semi-arid steppe. Agriculture, Ecosystems & Environment, 329, 107873.
DOI URL |
[2] | Cheng JW, Liu XM, Hao BH, Zhang XY, Zhang YP, Ma WH (2017) Effects of nitrogen deposition on ground-dwelling arthropods in a temperate grassland of Inner Mongolia. Chinese Journal of Ecology, 36, 2237-2245. (in Chinese with English abstract) |
[ 程建伟, 刘新民, 郝百惠, 张芯毓, 张宇平, 马文红 (2017) 氮沉降对内蒙古典型草原地表节肢动物的影响. 生态学杂志, 36, 2237-2245.] | |
[3] |
Dormont L, Epinat G, Lumaret JP (2004) Trophic preferences mediated by olfactory cues in dung beetles colonizing cattle and horse dung. Environmental Entomology, 33, 370-377.
DOI URL |
[4] | Du ZY, Cai YJ, Wang XD, Zhang B, Du Z (2019) Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 39, 4627-4637. (in Chinese with English abstract) |
[ 杜子银, 蔡延江, 王小丹, 张斌, 杜忠 (2019) 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 39, 4627-4637.] | |
[5] |
Du ZY, Wang XD, Xiang J, Wu Y, Zhang B, Yan Y, Zhang XK, Cai YJ (2021) Yak dung pat fragmentation affects its carbon and nitrogen leaching in Northern Tibet, China. Agriculture, Ecosystems & Environment, 310, 107301.
DOI URL |
[6] |
Edwards PB (1991) Seasonal variation in the dung of African grazing mammals, and its consequences for coprophagous insects. Functional Ecology, 5, 617-628.
DOI URL |
[7] |
Evans KS, Mamo M, Wingeyer A, Schacht WH, Eskridge KM, Bradshaw J, Ginting D (2019) Soil fauna accelerate dung pat decomposition and nutrient cycling into grassland soil. Rangeland Ecology & Management, 72, 667-677.
DOI URL |
[8] |
García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16, 1045-1053.
DOI PMID |
[9] |
Guo YY, Cao JM, Che ZB, Yang HJ, Huang XY, Lu WH (2021) Effects of dung beetles on decomposition of cattle dung in spring and autumn in a Seriphidium-dominated desert, China. Chinese Journal of Applied Ecology, 32, 1854-1862. (in Chinese with English abstract)
DOI |
[ 郭亚亚, 曹佳敏, 车昭碧, 杨寒珺, 黄星宇, 鲁为华 (2021) 粪甲虫对绢蒿荒漠春秋两季牛粪分解的影响. 应用生态学报, 32, 1854-1862.]
DOI |
|
[10] | He YX, Sun G, Luo P, Wu N (2009) Effects of dung deposition on grassland ecosystem: A review. Chinese Journal of Ecology, 28, 322-328. (in Chinese with English abstract) |
[ 何奕忻, 孙庚, 罗鹏, 吴宁 (2009) 牲畜粪便对草地生态系统影响的研究进展. 生态学杂志, 28, 322-328.] | |
[11] |
Holter P (2016) Herbivore dung as food for dung beetles: Elementary coprology for entomologists. Ecological Entomology, 41, 367-377.
DOI URL |
[12] | Holter P, Scholtz CH (2007) What do dung beetles eat? Ecological Entomology, 32, 690-697. |
[13] |
Johnson SN, Lopaticki G, Barnett K, Facey SL, Powell JR, Hartley SE (2016) An insect ecosystem engineer alleviates drought stress in plants without increasing plant susceptibility to an above-ground herbivore. Functional Ecology, 30, 894-902.
DOI URL |
[14] |
Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5, 588-595.
DOI URL |
[15] | Liu XM, Hai Y (2011) Dung beetle species composition and decomposition function in horse dung in desert steppe of Inner Mongolia. Chinese Journal of Ecology, 30, 2269-2276. (in Chinese with English abstract) |
[ 刘新民, 海英 (2011) 荒漠草原马粪中粪金龟子组成及分解作用. 生态学杂志, 30, 2269-2276.] | |
[16] |
Manning P, Slade EM, Beynon SA, Lewis OT (2016) Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agriculture, Ecosystems & Environment, 218, 87-94.
DOI URL |
[17] |
Menéndez R, Webb P, Orwin KH (2016) Complementarity of dung beetle species with different functional behaviours influence dung-soil carbon cycling. Soil Biology and Biochemistry, 92, 142-148.
DOI URL |
[18] |
Milotić T, Quidé S, Van Loo T, Hoffmann M (2017) Linking functional group richness and ecosystem functions of dung beetles: An experimental quantification. Oecologia, 183, 177-190.
DOI PMID |
[19] |
Moorhead DL, Sinsabaugh RL (2000) Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 14, 71-79.
DOI URL |
[20] |
Mroczyński R, Komosiński K (2014) Differences between beetle communities colonizing cattle and horse dung. European Journal of Entomology, 111, 349-355.
DOI URL |
[21] |
Nervo B, Caprio E, Celi L, Lonati M, Lombardi G, Falsone G, Iussig G, Palestrini C, Said-Pullicino D, Rolando A (2017) Ecological functions provided by dung beetles are interlinked across space and time: Evidence from 15N isotope tracing. Ecology, 98, 433-446.
DOI URL |
[22] | Piccini I, Arnieri F, Caprio E, Nervo B, Pelissetti S, Palestrini C, Roslin T, Rolando A (2017) Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS ONE, 12, e0178077. |
[23] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract) |
[ 邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[24] |
Sitters J, Maechler MJ, Edwards PJ, Suter W, Venterink HO (2014) Interactions between C : N : P stoichiometry and soil macrofauna control dung decomposition of savanna herbivores. Functional Ecology, 28, 776-786.
DOI URL |
[25] |
Slade EM, Roslin T, Santalahti M, Bell T (2016) Disentangling the ‘brown world’ faecal-detritus interaction web: Dung beetle effects on soil microbial properties. Oikos, 125, 629-635.
DOI URL |
[26] |
van Klink R, van der Plas F, WallisDeVries MF, Olff H (2015) Effects of large herbivores on grassland arthropod diversity. Biological Reviews, 90, 347-366.
DOI URL |
[27] |
Veldhuis MP, Gommers MI, Olff H, Berg MP (2018) Spatial redistribution of nutrients by large herbivores and dung beetles in a savanna ecosystem. Journal of Ecology, 106, 422-433.
DOI URL |
[28] |
Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabará MG, Salamon JA, Swift MJ, Varela A, Vasconcelos HL, White D, Zou XM (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate- dependent. Global Change Biology, 14, 2661-2677.
DOI URL |
[29] |
Wang JZ, Wang DL, Li CQ, Seastedt TR, Liang CZ, Wang L, Sun W, Liang MW, Li Y (2018) Feces nitrogen release induced by different large herbivores in a dry grassland. Ecological Applications, 28, 201-211.
DOI URL |
[30] |
Wang XY, Li FY, Wang YN, Liu XM, Cheng JW, Zhang JZ, Baoyin T, Bardgett RD (2020) High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant and Soil, 448, 265-276.
DOI URL |
[31] |
Wang YN, Li FY, Song X, Wang XS, Suri GG, Baoyin T (2020) Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agriculture, Ecosystems & Environment, 303, 107119.
DOI URL |
[32] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[33] |
Wu XW, Duffy J, Reich P, Sun SC (2011) A brown-world cascade in the dung decomposer food web of an alpine meadow: Effects of predator interactions and warming. Ecological Monographs, 81, 313-328.
DOI URL |
[34] |
Wu XW, Griffin JN, Sun SC (2014) Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow. Journal of Animal Ecology, 83, 546-556.
DOI PMID |
[35] | Wu XW, Li GY, Sun SC (2011) Effect of rainfall regimes on the decomposition rate of yak dung in an alpine meadow of northwest Sichuan Province, China. Acta Ecologica Sinica, 31, 28-36. (in Chinese with English abstract) |
[ 吴新卫, 李国勇, 孙书存 (2011) 降水量对川西北高寒草甸牦牛粪分解速率的影响. 生态学报, 31, 28-36.] | |
[36] |
Yang XD, Yang Z, Warren M, Chen J (2012) Mechanical fragmentation enhances the contribution of Collembola to leaf litter decomposition. European Journal of Soil Biology, 53, 23-31.
DOI URL |
[37] | Yin WY (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英(1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[38] | Zhai N, Alatenbagen, Liu XM (2018) Feeding preferences and daily activity rhythms of dung beetles on the Inner Mongolian steppe. Chinese Journal of Applied Entomology, 55, 428-437. (in Chinese with English abstract) |
[ 翟娜, 阿拉腾巴根, 刘新民 (2018) 内蒙古典型草原粪食性金龟的取食偏好和日活动节律特征. 应用昆虫学报, 55, 428-437.] | |
[39] |
Zhu YH, Merbold L, Leitner S, Pelster DE, Okoma SA, Ngetich F, Onyango AA, Pellikka P, Butterbach-Bahl K (2020) The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant and Soil, 451, 325-343.
DOI URL |
[1] | Jianwei Cheng, Manhou Xu, Yongjing Dou, Yadong Wang, Yanan Wang, Xinmin Liu, Yonghong Li. Seasonal dynamics of arthropod communities during horse dung decomposition in Inner Mongolian grasslands [J]. Biodiv Sci, 2024, 32(6): 24018-. |
[2] | Fan Li, Dangjun Wang, Xiaoyuan Lin, Kang Ji, Luping Ye, Chao Huang, Yong Zheng, Mao Zhun, Juan Zuo. Community characteristics of macroinvertebrates in woody debris in a subtropical forest in Badagongshan, China [J]. Biodiv Sci, 2022, 30(12): 21476-. |
[3] | Haifeng Yao, Saichao Zhang, Huayuan Shangguan, Zhipeng Li, Xin Sun. Effects of urbanization on soil fauna community structure and diversity [J]. Biodiv Sci, 2022, 30(12): 22547-. |
[4] | Siyao Liu, Zhu Li, Xin Ke, Lina Sun, Longhua Wu, Jiejie Zhao. Community characteristics of soil collembola around a typical mercury-thallium mining area in Guizhou Province [J]. Biodiv Sci, 2022, 30(12): 22265-. |
[5] | Shenglei Fu, Manqiang Liu, Weixin Zhang, Yuanhu Shao. A review of recent advances in the study of geographical distribution and ecological functions of soil fauna diversity [J]. Biodiv Sci, 2022, 30(10): 22435-. |
[6] | Yu Zhang, Zhenggao Xiao, Linhui Jiang, Lei Qian, Xiaoyun Chen, Fajun Chen, Feng Hu, Manqiang Liu. Nitrogen levels modify earthworm-mediated tomato growth and resistance to pests [J]. Biodiv Sci, 2018, 26(12): 1296-1307. |
[7] | Yining Wu, He Wang, Haixiu Zhong, Nan Xu, Jinbo Li, Jifeng Wang, Hongwei Ni, Hongfei Zou. The response of diverse soil fauna communities to elevated CO2 concentrations in Sanjiang Plain [J]. Biodiv Sci, 2018, 26(10): 1127-1132. |
[8] | Xiuqin Yin, Yan Tao, Haixia Wang, Chen Ma, Xinchang Kou, Huan Xu, Dong Cui. Forest soil fauna ecology in Northeast China: Review and prospect [J]. Biodiv Sci, 2018, 26(10): 1083-1090. |
[9] | Mengru Wang, Shenglei Fu, Haixiang Xu, Meina Wang, Leilei Shi. Ecological functions of millipedes in the terrestrial ecosystem [J]. Biodiv Sci, 2018, 26(10): 1051-1059. |
[10] | Zhizhong Yuan, Yang Cui, Shaokui Yan. Effect of leaf litter quantity and type on forest soil fauna and biological quality [J]. Biodiv Sci, 2013, 21(2): 206-213. |
[11] | Yongheng Zhu, Xiaohui Zhang, Fei Shen, Lin Lu. Community structures of soil fauna in reclaimed copper mine tailings and suburb forest land [J]. Biodiv Sci, 2012, 20(6): 725-734. |
[12] | Haifeng Zhuang, Yue Sun, Jiacun Gu, Yang Xu, Zhengquan Wang. Effects of nitrogen addition on soil fauna communities in Larix gmelinii and Fraxinus mandshuricaplantations [J]. Biodiv Sci, 2010, 18(4): 390-397. |
[13] | Yinghua Lin, Xueyun Yang,,Fudao Zhang, Qiaozhen Gu, Benhua Sun, Lujun Ma . Variation of soil fauna under different fertilizer treatments in loess soil croplands, Shaanxi Province [J]. Biodiv Sci, 2005, 13(3): 188-196. |
[14] | HAN Xing-Guo, WANG Zhi-Ping. Soil biodiversity and trace gases (CO2, CH4, N2O) metabolism: a review [J]. Biodiv Sci, 2003, 11(4): 322-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn