Biodiv Sci ›› 2024, Vol. 32 ›› Issue (10): 24265. DOI: 10.17520/biods.2024265 cstr: 32101.14.biods.2024265
• Reviews • Previous Articles Next Articles
Zixin Zhang1, Chengyun Zhang1(), Zezhou Hao2,*(
)(
), Kaiying He1(
), Yongqiao Huang1, Zhishu Xiao3(
)
Received:
2024-06-28
Accepted:
2024-10-16
Online:
2024-10-20
Published:
2024-12-03
Contact:
*E-mail: zezhouhao@caf.ac.cn
Supported by:
Zixin Zhang, Chengyun Zhang, Zezhou Hao, Kaiying He, Yongqiao Huang, Zhishu Xiao. The progress and prospects of terrestrial bioacoustics data acquisition equipment[J]. Biodiv Sci, 2024, 32(10): 24265.
特点 Features | 自制设备 Homemade equipment | 商用设备 Commercial equipment |
---|---|---|
灵活性 Flexibility | 可根据需求进行定制设计 Consumer can customize the design according to requirements | 固定功能 Fixed function |
技术支持 Technical support | 需自行维护 Requiring self-maintenance | 完善的售后服务 Comprehensive after-sales service |
使用场景 Usage scenarios | 适用于科研探索和特定的 需求 Suitable for scientific exploration and specific needs | 适用于大规模部署 Suitable for large- scale deployment |
Table 1 Comparison of the characteristics of commercial equipment and self-made equipment
特点 Features | 自制设备 Homemade equipment | 商用设备 Commercial equipment |
---|---|---|
灵活性 Flexibility | 可根据需求进行定制设计 Consumer can customize the design according to requirements | 固定功能 Fixed function |
技术支持 Technical support | 需自行维护 Requiring self-maintenance | 完善的售后服务 Comprehensive after-sales service |
使用场景 Usage scenarios | 适用于科研探索和特定的 需求 Suitable for scientific exploration and specific needs | 适用于大规模部署 Suitable for large- scale deployment |
[1] | Beason RD, Riesch R, Koricheva J (2019) AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics, 28, 381-396. |
[2] | Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011) Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758-767. |
[3] | Britzke ER, Gillam EH, Murray KL (2013) Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriologica, 58, 109-117. |
[4] | Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: A perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 365, 2157-2162. |
[5] |
Chesmore ED, Ohya E (2004) Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition. Bulletin of Entomological Research, 94, 319-330.
PMID |
[6] |
Darras K, Kolbrek B, Knorr A, Meyer V, Zippert M, Wenzel A (2018) Assembling cheap, high-performance microphones for recording terrestrial wildlife: The Sonitor system. F1000Research, 7, 1984.
DOI PMID |
[7] | Ding CT, Cao JN, Yang L, Wang SG (2019) Edge computing: Applications, state-of-the-art and challenges. ZTE Technology Journal, 25(3), 1-7. (in Chinese with English abstract) |
[丁春涛, 曹建农, 杨磊, 王尚广 (2019) 边缘计算综述: 应用、现状及挑战. 中兴通讯技术, 25(3), 1-7.] | |
[8] | Gibb R, Browning E, Glover-Kapfer P, Jones KE (2019) Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology and Evolution, 10, 169-185. |
[9] |
Gottwald J, Lampe P, Höchst J, Friess N, Maier J, Leister L, Neumann B, Richter T, Freisleben B, Nauss T (2021) BatRack: An open-source multi-sensor device for wildlife research. Methods in Ecology and Evolution, 12, 1867-1874.
DOI |
[10] | Graviola GR, Ribeiro MC, Pena JC (2024) Human perception of birds in two Brazilian cities. Birds, 5, 202-216. |
[11] | Gregory RD, Gibbons DW, Donald PF (2004) Bird census and survey techniques. In: Bird Ecology and Conservation (ed. Sutherland WJ), pp.17-56. Oxford University Press, New York. |
[12] |
Guo QH, Hu TY, Jiang YX, Jin SC, Wang R, Guan HC, Yang QL, Li YM, Wu FF, Zhai QP, Liu J, Su YJ (2018) Advances in remote sensing application for biodiversity research. Biodiversity Science, 26, 789-806. (in Chinese with English abstract)
DOI |
[郭庆华, 胡天宇, 姜媛茜, 金时超, 王瑞, 关宏灿, 杨秋丽, 李玉美, 吴芳芳, 翟秋萍, 刘瑾, 苏艳军 (2018) 遥感在生物多样性研究中的应用进展. 生物多样性, 26, 789-806.]
DOI |
|
[13] | Heath BE, Suzuki R, Le Penru NP, Skinner J, Orme CDL, Ewers RM, Sethi SS, Picinali L (2024) Spatial ecosystem monitoring with a multichannel acoustic autonomous recording unit (MAARU). Methods in Ecology and Evolution, 15, 1568-1579. |
[14] | Hill AP, Prince P, Piña Covarrubias E, Doncaster CP, Snaddon JL, Rogers A (2018) AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9, 1199-1211. |
[15] | Hill AP, Prince P, Snaddon JL, Doncaster CP, Rogers A (2019) AudioMoth: A low-cost acoustic device for monitoring biodiversity and the environment. HardwareX, 6, e00073. |
[16] | Huang CJ, Yang YJ, Yang DX, Chen YJ (2009) Frog classification using machine learning techniques. Expert Systems with Applications, 36, 3737-3743. |
[17] |
Kadish D, Stoy K (2022) BioAcoustic index tool: Long-term biodiversity monitoring using on-sensor acoustic index calculations. Bioacoustics, 31, 348-378.
DOI |
[18] | Karlsson ECM, Tay H, Imbun P, Hughes AC (2021) The Kinabalu Recorder, a new passive acoustic and environmental monitoring recorder. Methods in Ecology and Evolution, 12, 2109-2116. |
[19] | Kershenbaum A, Owens JL, Waller S (2019) Tracking cryptic animals using acoustic multilateration: A system for long-range wolf detection. The Journal of the Acoustical Society of America, 145, 1619. |
[20] | Kiarie G, Maina CW (2021) Raspberry Pi based recording system for acoustic monitoring of bird species. In: 2021 IST-Africa Conference (IST-Africa), pp. 1-8. May 10-14, 2021, South Africa, South Africa. |
[21] | Kojima R, Sugiyama O, Hoshiba K, Suzuki R, Nakadai K (2018) HARK-bird-box:A Portable Real-time Bird Song Scene Analysis System. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2497-2502. October 1-5, 2018, Madrid, Spain. |
[22] | Küc̣üktopcu O, Masazade E, Ünsalan C, Varshney PK (2019) A real-time bird sound recognition system using a low-cost microcontroller. Applied Acoustics, 148, 194-201. |
[23] | Metcalf O, Abrahams C, Ashingto B, Baker E, Bradfer- Lawrence T, Browning E, Carruthers-Jones J, Darby J, Dick J, Eldridge A, Elliott D, Heath B, Howden-Leach P, Johnston A, Lees AC, Meyer C, Ruiz Arana U, Smyth S (2023) Good Practice Guidelines for Long-term Ecoacoustic Monitoring in the UK: With a Particular Focus on Terrestrial Biodiversity at the Human-audible Frequency Range. Institute of Acoustics (IOA), UK. |
[24] | Mosikidi T, Le Maitre N, Steenhuisen SL, Clark VR, Lloyd KS, Le Roux A (2023) Passive acoustic monitoring detects new records of globally threatened birds in a high-elevation wetland (Free State, South Africa). Bird Conservation International, 33, e80. |
[25] | Piña-Covarrubias E, Hill AP, Prince P, Snaddon JL, Rogers A, Doncaster CP (2019) Optimization of sensor deployment for acoustic detection and localization in terrestrial environments. Remote Sensing in Ecology and Conservation, 5, 180-192. |
[26] |
Podolskiy EA, Ogawa M, Thiebot JB, Johansen KL, Mosbech A (2024) Acoustic monitoring reveals a diel rhythm of an Arctic seabird colony (little auk, Alle alle). Communications Biology, 7, 307.
DOI PMID |
[27] | Qin YY, Zhao LH, Wang JC (2023) Roles and development trends of passive acoustic monitoring techniques for biodiversity conservation in national parks. National Park, 1, 264-271. (in Chinese with English abstract) |
[覃远玉, 赵龙辉, 汪继超 (2023) 被动声学监测技术在国家公园生物多样性保护中的作用及发展趋势. 国家公园(中英文), 1, 264-271.] | |
[28] |
Rhinehart TA, Chronister LM, Devlin T, Kitzes J (2020) Acoustic localization of terrestrial wildlife: Current practices and future opportunities. Ecology and Evolution, 10, 6794-6818.
DOI PMID |
[29] | Rossi M, Feese S, Amft O, Braune N, Martis S, Tröster G (2013) AmbientSense: A real-time ambient sound recognition system for smartphones. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 230-235. March 18-22, 2013, San Diego, CA, USA. |
[30] | Sethi SS, Ewers RM, Jones NS, Orme CDL, Picinali L (2018) Robust, real-time and autonomous monitoring of ecosystems with an open, low-cost, networked device. Methods in Ecology and Evolution, 9, 2383-2387. |
[31] | Sethi SS, Ewers RM, Jones NS, Signorelli A, Picinali L, Orme CDL (2020) SAFE Acoustics: An open-source, real-time eco-acoustic monitoring network in the tropical rainforests of Borneo. Methods in Ecology and Evolution, 11, 1182-1185. |
[32] | Sugai LSM, Llusia D (2019) Bioacoustic time capsules: Using acoustic monitoring to document biodiversity. Ecological Indicators, 99, 149-152. |
[33] |
Suzuki R, Matsubayashi S, Saito F, Murate T, Masuda T, Yamamoto K, Kojima R, Nakadai K, Okuno HG (2018) A spatiotemporal analysis of acoustic interactions between great reed warblers (Acrocephalus arundinaceus) using microphone arrays and robot audition software HARK. Ecology and Evolution, 8, 812-825.
DOI PMID |
[34] | Turgeon PJ, Van Wilgenburg SL, Drake KL (2017) Microphone variability and degradation: Implications for monitoring programs employing autonomous recording units. Avian Conservation and Ecology, 12, art9. |
[35] |
Verreycken E, Simon R, Quirk-Royal B, Daems W, Barber J, Steckel J (2021) Bio-acoustic tracking and localization using heterogeneous, scalable microphone arrays. Communications Biology, 4, 1275.
DOI PMID |
[36] | Whytock RC, Christie J (2017) Solo: An open source, customizable and inexpensive audio recorder for bioacoustic research. Methods in Ecology and Evolution, 8, 308-312. |
[37] | Wijers M, Loveridge A, MacDonald DW, Markham A (2021) CARACAL: A versatile passive acoustic monitoring tool for wildlife research and conservation. Bioacoustics, 30, 41-57. |
[38] |
Wu H, Xu XH, Feng XJ, Mi XC, Su YJ, Xiao ZS, Zhu CD, Cao L, Gao X, Song CY, Guo LD, Wu DH, Jiang JP, Shen H, Ma KP (2022) Progress and prospect of China biodiversity monitoring from a global perspective. Biodiversity Science, 30, 22434. (in Chinese with English abstract)
DOI |
[吴慧, 徐学红, 冯晓娟, 米湘成, 苏艳军, 肖治术, 朱朝东, 曹垒, 高欣, 宋创业, 郭良栋, 吴东辉, 江建平, 沈浩, 马克平 (2022) 全球视角下的中国生物多样性监测进展与展望. 生物多样性, 30, 22434.]
DOI |
|
[39] | Yen B, Prins J, Schmid G, Hioka Y, Ellis S, Marsland S (2022) Design of a low-cost passive acoustic monitoring system for animal localisation from calls. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9247-9252. October 23-27, 2022, Kyoto, Japan. |
[40] | Zhao K, Chen G, Zhang YY (2023) Bird diversity monitoring at Beijing Xiaolongmen Forest with acoustic indices. Journal of Beijing Normal University (Natural Science), 59, 607-613. (in Chinese with English abstract) |
[赵凯, 陈功, 张雁云 (2023) 基于声学指数监测北京小龙门林区鸟类多样性. 北京师范大学学报(自然科学版), 59, 607-613.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn