Biodiv Sci ›› 2023, Vol. 31 ›› Issue (1): 22513. DOI: 10.17520/biods.2022513
• Original Papers: Animal Diversity • Previous Articles Next Articles
Yimei Zhang1, Yanyi Wang1, Yan He2, Bing Zhou1, Miao Tian1, Canwei Xia1,*()
Received:
2022-09-06
Accepted:
2022-12-16
Online:
2023-01-20
Published:
2023-01-31
Contact:
*Canwei Xia, E-mail: xiacanwei@bnu.edu.cn
Yimei Zhang, Yanyi Wang, Yan He, Bing Zhou, Miao Tian, Canwei Xia. Characteristics and applications of beta acoustic indices[J]. Biodiv Sci, 2023, 31(1): 22513.
声学指数 Acoustic index | 计算公式 Computing formula | 公式中符号的含义 Meaning of symbols in the formula | 参考文献 Reference |
---|---|---|---|
交互信息指数 Mutual information index (MI) | H1, H2, | 2004 | |
相对频谱差异指数 Relative frequency dissimilarity index (RF) | xi, yi分别为两段声音各自频段的相对音强 xi, yi are the relative sound intensity in each frequency band of each sound | 2006 | |
时间差异指数 Temporal dissimilarity index (TD) | si, ti分别为两段声音各自时段的相对音强 si, ti are the relative sound intensity in each time period of each sound | 2008 | |
频谱差异指数 Spectral dissimilarity index (SD) | 同RF Same as in the formula of RF | 2008 | |
声音差异指数 Acoustic dissimilarity index (AD) | TD和SD的乘积 Product of TD and SD | 2008 | |
Kolmogorov-Smirnov距离指数 Kolmogorov-Smirnov distance index (KS) | Xi, Yi分别为两段声音每个频率的累积音强 Xi, Yi are the cumulative sound intensity in each frequency of each sound | 2013a | |
Kullback-Leibler距离指数 Kullback-Leibler distance index (KL) | 同RF Same as in the formula of RF | 2013a | |
累积频谱差异指数 Cumulative spectral dissimilarity index (CS) | 同KS Same as in the formula of KS | 2014 | |
相关差异指数 Correlation-based dissimilarity index (CB) | 同RF Same as in the formula of RF | 2014 | |
Itakura-Saito距离指数 Itakura-Saito distance index (IS) | 同RF Same as in the computing of RF | 2018 | |
对数频谱距离指数 Log-spectral distance index (LS) | 同RF Same as in the formula of RF | 2018 |
Table 1 Description of the commonly used beta acoustic indices
声学指数 Acoustic index | 计算公式 Computing formula | 公式中符号的含义 Meaning of symbols in the formula | 参考文献 Reference |
---|---|---|---|
交互信息指数 Mutual information index (MI) | H1, H2, | 2004 | |
相对频谱差异指数 Relative frequency dissimilarity index (RF) | xi, yi分别为两段声音各自频段的相对音强 xi, yi are the relative sound intensity in each frequency band of each sound | 2006 | |
时间差异指数 Temporal dissimilarity index (TD) | si, ti分别为两段声音各自时段的相对音强 si, ti are the relative sound intensity in each time period of each sound | 2008 | |
频谱差异指数 Spectral dissimilarity index (SD) | 同RF Same as in the formula of RF | 2008 | |
声音差异指数 Acoustic dissimilarity index (AD) | TD和SD的乘积 Product of TD and SD | 2008 | |
Kolmogorov-Smirnov距离指数 Kolmogorov-Smirnov distance index (KS) | Xi, Yi分别为两段声音每个频率的累积音强 Xi, Yi are the cumulative sound intensity in each frequency of each sound | 2013a | |
Kullback-Leibler距离指数 Kullback-Leibler distance index (KL) | 同RF Same as in the formula of RF | 2013a | |
累积频谱差异指数 Cumulative spectral dissimilarity index (CS) | 同KS Same as in the formula of KS | 2014 | |
相关差异指数 Correlation-based dissimilarity index (CB) | 同RF Same as in the formula of RF | 2014 | |
Itakura-Saito距离指数 Itakura-Saito distance index (IS) | 同RF Same as in the computing of RF | 2018 | |
对数频谱距离指数 Log-spectral distance index (LS) | 同RF Same as in the formula of RF | 2018 |
声学指数Acoustic index* | 非负性 Non-negativity | 同一性 Self-identity | 对称性 Symmetry | 直递性 Triangle inequality | 有限性 Finiteness |
---|---|---|---|---|---|
MI | 否 No | 否 No | 是 Yes | 否 No | 是 Yes |
RF | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
TD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
SD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
AD | 是 Yes | 否 No | 是 Yes | 否 No | 否 No |
KS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
KL | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
CS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
CB | 是 Yes | 是 Yes | 是 Yes | 否 No | 是 Yes |
IS | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
LS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
Table 2 Mathematical properties of beta acoustic indices
声学指数Acoustic index* | 非负性 Non-negativity | 同一性 Self-identity | 对称性 Symmetry | 直递性 Triangle inequality | 有限性 Finiteness |
---|---|---|---|---|---|
MI | 否 No | 否 No | 是 Yes | 否 No | 是 Yes |
RF | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
TD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
SD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
AD | 是 Yes | 否 No | 是 Yes | 否 No | 否 No |
KS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
KL | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
CS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
CB | 是 Yes | 是 Yes | 是 Yes | 否 No | 是 Yes |
IS | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
LS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
声学指数 Acoustic index* | 生物学意义 Biological significance | 文献 Reference |
---|---|---|
AD | 反映物种(鸟类、两栖类、昆虫)组成不同 Difference in species (birds, amphibians, insects) composition | 2008 |
AD | 反映生境差异(成熟森林、幼林、林地-农田交错带的比较) Difference in habitat comparison among mature forest, young forest, and forest-cropland ecotone | 2012 |
SD | 反映日节律 Daily rhythm | 2013a |
SD, KS, KL, CB | 反映鸟类物种数量不同 Difference in the number of bird species | 2013b |
CB, KL, SD, KS, CS | 反映鸟类物种数量不同 Difference in the number of bird species | 2014 |
SD | 反映日节律、生境差异(林下层和树冠层的比较) Daily rhythm, difference in habitat comparison between understory and canopy | 2014 |
AD | 反映生境差异(清除、再生、残留植被的比较) Difference in habitat comparison among cleared, regrowth and remnant vegetation conditions | 2018 |
SD, CS | 反映月相变化、生境差异(有无入侵生物啮齿类和狐狸) Lunar rhythm, difference in habitat have or not have invasive species rats and foxes | 2020 |
SD, CS | 反映日节律、生境差异(油棕种植园和周围森林的比较) Daily rhythm, difference in habitat comparison between oil palm plantation and surrounding forests | 2020 |
AD | 反映日节律和季节变化 Daily rhythm, seasonal variation | 2022 |
SD, TD, CS, AD, KS, CB, MI, LS, RF | 反映生境差异(混交林、落叶林的比较) Difference in habitat comparison between mixed-use corridor and deciduous forest | 2022 |
Table 3 The application of beta acoustic indices
声学指数 Acoustic index* | 生物学意义 Biological significance | 文献 Reference |
---|---|---|
AD | 反映物种(鸟类、两栖类、昆虫)组成不同 Difference in species (birds, amphibians, insects) composition | 2008 |
AD | 反映生境差异(成熟森林、幼林、林地-农田交错带的比较) Difference in habitat comparison among mature forest, young forest, and forest-cropland ecotone | 2012 |
SD | 反映日节律 Daily rhythm | 2013a |
SD, KS, KL, CB | 反映鸟类物种数量不同 Difference in the number of bird species | 2013b |
CB, KL, SD, KS, CS | 反映鸟类物种数量不同 Difference in the number of bird species | 2014 |
SD | 反映日节律、生境差异(林下层和树冠层的比较) Daily rhythm, difference in habitat comparison between understory and canopy | 2014 |
AD | 反映生境差异(清除、再生、残留植被的比较) Difference in habitat comparison among cleared, regrowth and remnant vegetation conditions | 2018 |
SD, CS | 反映月相变化、生境差异(有无入侵生物啮齿类和狐狸) Lunar rhythm, difference in habitat have or not have invasive species rats and foxes | 2020 |
SD, CS | 反映日节律、生境差异(油棕种植园和周围森林的比较) Daily rhythm, difference in habitat comparison between oil palm plantation and surrounding forests | 2020 |
AD | 反映日节律和季节变化 Daily rhythm, seasonal variation | 2022 |
SD, TD, CS, AD, KS, CB, MI, LS, RF | 反映生境差异(混交林、落叶林的比较) Difference in habitat comparison between mixed-use corridor and deciduous forest | 2022 |
[1] | Baraty S, Simovici DA, Zara C (2011) The impact of triangular inequality violations on medoid-based clustering. In: International Symposium on Methodologies for Intelligent Systems (eds Kryszkiewicz M, Rybinski H, Skowron A, Raś ZW), pp. 280-289. Springer, Heidelberg. |
[2] |
Borker AL, Buxton RT, Jones IL, Major HL, Williams JC, Tershy BR, Croll DA (2020) Do soundscape indices predict landscape-scale restoration outcomes? A comparative study of restored seabird island soundscapes. Restoration Ecology, 28, 252-260.
DOI URL |
[3] |
Bradfer-Lawrence T, Gardner N, Bunnefeld L, Bunnefeld N, Willis SG, Dent DH (2019) Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 10, 1796-1807.
DOI |
[4] | Budka M, Jobda M, Szałański P, Piórkowski H (2022) Acoustic approach as an alternative to human-based survey in bird biodiversity monitoring in agricultural meadows. PLoS ONE, 17, e0266557. |
[5] |
Cazelles B (2004) Symbolic dynamics for identifying similarity between rhythms of ecological time series. Ecology Letters, 7, 755-763.
DOI URL |
[6] | Cha SH (2007) Comprehensive survey on distance/similarity measures between probability density. International Journal of Mathematical Models and Methods in Applied Science, 1, 300-307. |
[7] | Clement P, Desch W (2008) An elementary proof of the triangle inequality for the Wasserstein metric. Proceedings of the American Mathematical Society, 136, 333-339. |
[8] |
Deecke VB, Janik VM (2006) Automated categorization of bioacoustic signals: Avoiding perceptual pitfalls. The Journal of the Acoustical Society of America, 119, 645-653.
DOI URL |
[9] |
Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J (2012) Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 13, 46-54.
DOI URL |
[10] | Deza E, Deza MM (2006) Dictionary of Distances. Elsevier, Amsterdam. |
[11] | Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 147-153. Washington, DC. |
[12] |
Farina A (2019) Ecoacoustics: A quantitative approach to investigate the ecological role of environmental sounds. Mathematics, 7, 21.
DOI URL |
[13] |
Févotte C, Bertin N, Durrieu JL (2009) Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. Neural Computation, 21, 793-830.
DOI PMID |
[14] |
Gasc A, Francomano D, Dunning JB, Pijanowski BC (2017) Future directions for soundscape ecology: The importance of ornithological contributions. The Auk, 134, 215-228.
DOI URL |
[15] |
Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S (2013a) Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279-287.
DOI URL |
[16] | Gasc A, Sueur J, Pavoine S, Pellens R, Grandcolas P (2013b) Biodiversity sampling using a global acoustic approach: Contrasting sites with microendemics in New Caledonia. PLoS ONE, 8, e65311. |
[17] | Hayashi K, Erwinsyah, Lelyana VD, Yamamura K (2020) Acoustic dissimilarities between an oil palm plantation and surrounding forests: Analysis of index time series for beta-diversity in South Sumatra, Indonesia. Ecological Indicators, 112, 106086. |
[18] | Hou YN, Zhang X, Guo Y, Yu XW, Ouyang X, Yang ML (2022) Analysis of soundscape components and influencing spatial factors in the Shennongjia National Park, China. Journal of Forest and Environment, 42, 29-37. (in Chinese with English abstract) |
[侯亚男, 张旭, 郭颖, 于新文, 欧阳萱, 杨铭伦 (2022) 神农架声景构成及空间影响因素. 森林与环境学报, 42, 29-37.] | |
[19] | Krause B (1993) The niche hypothesis. Soundscape Newsletter, 6, 6-10. |
[20] | Kryszkiewicz M, Lasek P (2010) Ti-dbscan:Clustering with dbscan by means of the triangle inequality. In: In: International Conference on Rough Sets and Current Trends in Computing (eds Szczuka M, Kryszkiewicz M, Ramanna S, Jensen R, Hu Q), pp. 60-69. Springer, Heidelberg. |
[21] | Lawrence BT, Hornberg J, Haselhoff T, Sutcliffe R, Ahmed S, Moebus S, Gruehn D (2022) A widened array of metrics (WAM) approach to characterize the urban acoustic environment: A case comparison of urban mixed-use and forest. Applied Acoustics, 185, 108387. |
[22] |
Lellouch L, Pavoine S, Jiguet F, Glotin H, Sueur J (2014) Monitoring temporal change of bird communities with dissimilarity acoustic indices. Methods in Ecology and Evolution, 5, 495-505.
DOI URL |
[23] |
Lun KH, Zhang YY, Xia CW (2017) Bird diversity monitoring based on sound index. Bulletin of Biology, 52(11), 1-5. (in Chinese)
DOI URL |
[伦可环, 张雁云, 夏灿玮 (2017) 基于声音指数的鸟类多样性监测. 生物学通报, 52(11), 1-5.] | |
[24] | Moore AW (2000) The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (eds Boutilier C, Goldszmidt M), pp. 397-405. Morgan Kaufmann, San Francisco. |
[25] |
Ng ML, Butler N, Woods N (2018) Soundscapes as a surrogate measure of vegetation condition for biodiversity values: A pilot study. Ecological Indicators, 93, 1070-1080.
DOI URL |
[26] |
Pan JS, McInnes FR, Jack MA (1996) Fast clustering algorithms for vector quantization. Pattern Recognition, 29, 511-518.
DOI URL |
[27] |
Pieretti N, Farina A, Morri D (2011) A new methodology to infer the singing activity of an avian community: The acoustic complexity index (ACI). Ecological Indicators, 11, 868-873.
DOI URL |
[28] |
Rodriguez A, Gasc A, Pavoine S, Grandcolas P, Gaucher P, Sueur J (2014) Temporal and spatial variability of animal sound within a neotropical forest. Ecological Informatics, 21, 133-143.
DOI URL |
[29] | Sueur J (2018) Sound Analysis and Synthesis with R. Springer. |
[30] |
Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014) Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100, 772-781.
DOI URL |
[31] | Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS ONE, 3, e4065. |
[32] |
Szulga A (1983) On minimal metrics in the space of random- variables. Theory of Probability and Its Applications, 27, 424-430.
DOI URL |
[33] |
Wang DP, Forstmeier W, Farine DR, Maldonado-Chaparro AA, Martin K, Pei YF, Alarcón-Nieto G, Klarevas-Irby JA, Ma SW, Aplin LM, Kempenaers B (2022) Machine learning reveals cryptic dialects that explain mate choice in a songbird. Nature Communications, 13, 1630.
DOI PMID |
[34] |
Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
DOI URL |
[35] |
Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69-94.
DOI URL |
[36] | Wilford DC, Miksis-Olds JL, Martin SB, Howard DR, Lowell K, Lyons AP, Smith MJ (2021) Quantitative soundscape analysis to understand multidimensional features. Frontiers in Marine Science, 8, 672336. |
[37] |
Zhao Y, Shen XL, Li S, Zhang YY, Peng RH, Ma KP (2020) Progress and outlook for soundscape ecology. Biodiversity Science, 28, 806-820. (in Chinese with English abstract)
DOI |
[赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平 (2020) 声景生态学研究进展和展望. 生物多样性, 28, 806-820.]
DOI |
[1] | Wenqian Xiang Wen-Juan Wang Mingxun Ren. Traditional biodiversity knowledge in Bombax ceiba cultures: inherit and utilization [J]. Biodiv Sci, 2023, 31(3): 22524-. |
[2] | Dongmin Hou Hong Hui Dongru Zhang Nengwen Xiao Dingqi Rao. Diversity of amphibians and reptiles in Yunnan region of the Yunling Mountains [J]. Biodiv Sci, 2023, 31(2): 22316-. |
[3] | Jinzhou Wang Jing Xu. Nature-based solutions for addressing biodiversity loss and climate change: Progress, challenges and suggestions [J]. Biodiv Sci, 2023, 31(2): 22496-. |
[4] | Huiyin Song Zhengyu Hu Guoxiang Liu. Assessing advances in taxonomic research on Chlorellaceae (Chlorophyta) [J]. Biodiv Sci, 2023, 31(2): 22083-. |
[5] | Xiangying Shi Xueyang Li Chunyue Wei Ge Sun Zhen Liu Xiang Zhao Jiading Zhou Jian Fan Cheng Li Zhi Lü. Avian and mammal diversities and their altitudinal and seasonal distribution patterns in Yarlung Zangbo Grand Canyon, China [J]. Biodiv Sci, 2023, 31(2): 22491-. |
[6] | Shikun Guo Ming-Qiang WANG Pengfei Guo Tingting Chen Zeqing Niu A Rong Luo Juanjuan Yang Qingsong Zhou Chaodong Zhu. Diversity of cavity-nesting Hymenoptera and their parasitoids in subtropical forests,southeastern China [J]. Biodiv Sci, 2023, 31(2): 22060-. |
[7] | Yihan Wang Qianqian Zhao Yixin Diao Bojian Gu Yue Weng Zhuojin Zhang Yongbin Chen Fang Wang. Diel activity, habitat utilization, and response to anthropogenic interference of small Indian civets (Viverricula indica) in Shanghai urban areas based on camera trapping [J]. Biodiv Sci, 2023, 31(2): 22294-. |
[8] | Keyi Wu, Wenda Ruan, Difeng Zhou, Qingchen Chen, Chengyun Zhang, Xinyuan Pan, Shang Yu, Yang Liu, Rongbo Xiao. Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring [J]. Biodiv Sci, 2023, 31(1): 22370-. |
[9] | Haigang Ma, Penglai Fan. Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research [J]. Biodiv Sci, 2023, 31(1): 22374-. |
[10] | Yanyi Wang, Yimei Zhang, Canwei Xia, Anders Pape Møller. A meta-analysis of the effects in alpha acoustic indices [J]. Biodiv Sci, 2023, 31(1): 22369-. |
[11] | Qi Bian, Cheng Wang, He Cheng, Dan Han, Yilin Zhao, Luqin Yin. Exploring the application of acoustic indices in the assessment of bird diversity in urban forests [J]. Biodiv Sci, 2023, 31(1): 22080-. |
[12] | Yifei Sun, Shizheng Wang, Jiawei Feng, Tianming Wang. Diel and seasonal variability of the forest soundscape in the Northeast China Tiger and Leopard National Park [J]. Biodiv Sci, 2023, 31(1): 22523-. |
[13] | Zhishu Xiao, Jianguo Cui, Daiping Wang, Zhitao Wang, Jinhong Luo, Jie Xie. Interdisciplinary development trends of contemporary bioacoustics and the opportunities for China [J]. Biodiv Sci, 2023, 31(1): 22423-. |
[14] | Xia Wan, Li-Bing Zhang. Global new taxa of vascular plants published in 2021 [J]. Biodiv Sci, 2022, 30(8): 22116-. |
[15] | Ludan Zhang, Ying Lu, Chang Chu, Qiaoqiao He, Zhiyuan Yao. New spider taxa of the world in 2021 [J]. Biodiv Sci, 2022, 30(8): 22163-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn