Biodiv Sci ›› 2021, Vol. 29 ›› Issue (9): 1198-1205. DOI: 10.17520/biods.2021095
Special Issue: 生物入侵
• Original Papers: Plant Diversity • Previous Articles Next Articles
Mingxian Deng1, Heyan Huang1, Shiyun Shen1, Jihua Wu1,2,3, Qiong La2,3, Tsechoe Dorji4, Xiaoyun Pan1,2,3,*()
Received:
2021-03-14
Accepted:
2021-06-13
Online:
2021-09-20
Published:
2021-09-16
Contact:
Xiaoyun Pan
Mingxian Deng, Heyan Huang, Shiyun Shen, Jihua Wu, Qiong La, Tsechoe Dorji, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming in the Tibet Plateau in introduced vs. native populations[J]. Biodiv Sci, 2021, 29(9): 1198-1205.
Fig. 1 Responses of Alternanthera philoxeroides to simulated daily warming and difference between introduced (China) and native (Argentina) populations (mean ± SE). BI, Branching intensity; RSR, Root to shoot ratio; SLA, Specific leaf area; SSL, Specific stem length.
变异来源 Source of variation | 适合度性状(生物量) Fitness trait (biomass) | 功能性状 Functional trait | 防御性状 Defense trait | |||||||
---|---|---|---|---|---|---|---|---|---|---|
总 Total | 地上 Ground | 贮藏根 Storage root | 毛根 Hair root | 分枝强度 BI | 比茎长 SSL | 根冠比 RSR | 比叶面积 SLA | 黄酮 Flavonoids | 三萜皂苷 Triterpenoid saponins | |
模拟全天增温 Simulated daily warming (W) | 6.698 (0.027) | 7.054 (0.024) | 12.804 (0.005) | 22.444 (0.001) | 4.585 (0.058) | 67.458 (< 0.001) | 1.999 (0.188) | 0.248 (0.624) | 2.183 (0.155) | 1.837 (0.205) |
来源地 Origin (O) | 0.044 (0.839) | 0.008 (0.933) | 0.879 (0.371) | 0.549 (0.476) | 1.252 (0.289) | 3.883 (0.077) | 0.028 (0.870) | 2.407 (0.137) | 0.023 (0.880) | 1.677 (0.224) |
W × O | 2.928 (0.118) | 2.334 (0.158) | 2.548 (0.141) | 0.199 (0.665) | 0.761 (0.404) | 0.365 (0.618) | 0.178 (0.682) | 4.630 (0.044) | 5.733 (0.027) | 1.675 (0.225) |
Table 1 Effects of simulated daily warming on fitness traits, functional traits and defense traits between two different origins (introduced and native) of Alternanthera philoxeroides (F (P)). BI, Branching intensity; RSR, Root to shoot ratio; SLA, Specific leaf area; SSL, Specific stem length. Significant effects are marked in bold, and marginally significant effects are marked in italics.
变异来源 Source of variation | 适合度性状(生物量) Fitness trait (biomass) | 功能性状 Functional trait | 防御性状 Defense trait | |||||||
---|---|---|---|---|---|---|---|---|---|---|
总 Total | 地上 Ground | 贮藏根 Storage root | 毛根 Hair root | 分枝强度 BI | 比茎长 SSL | 根冠比 RSR | 比叶面积 SLA | 黄酮 Flavonoids | 三萜皂苷 Triterpenoid saponins | |
模拟全天增温 Simulated daily warming (W) | 6.698 (0.027) | 7.054 (0.024) | 12.804 (0.005) | 22.444 (0.001) | 4.585 (0.058) | 67.458 (< 0.001) | 1.999 (0.188) | 0.248 (0.624) | 2.183 (0.155) | 1.837 (0.205) |
来源地 Origin (O) | 0.044 (0.839) | 0.008 (0.933) | 0.879 (0.371) | 0.549 (0.476) | 1.252 (0.289) | 3.883 (0.077) | 0.028 (0.870) | 2.407 (0.137) | 0.023 (0.880) | 1.677 (0.224) |
W × O | 2.928 (0.118) | 2.334 (0.158) | 2.548 (0.141) | 0.199 (0.665) | 0.761 (0.404) | 0.365 (0.618) | 0.178 (0.682) | 4.630 (0.044) | 5.733 (0.027) | 1.675 (0.225) |
[1] |
Agathokleous E, Belz RG, Kitao M, Koike T, Calabrese EJ (2019) Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. Journal of Forestry Research, 30, 1569-1580.
DOI |
[2] |
Ban ZH, Wang Q (2015) Responses of the competition between Alternanthera philoxeroides and Sambucus chinensis to simulated warming. Chinese Journal of Plant Ecology, 39, 43-51. (in Chinese with English abstract)
DOI URL |
[班芷桦, 王琼 (2015) 喜旱莲子草和接骨草竞争对模拟增温的响应. 植物生态学报, 39, 43-51.]
DOI |
|
[3] |
Bauerfeind SS, Fischer K (2013) Increased temperature reduces herbivore host-plant quality. Global Change Biology, 19, 3272- 3282
DOI PMID |
[4] | Buckingham GR (1996) Biological control of alligatorweed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea, 61, 232-243. |
[5] |
Chevin LM, Hoffmann AA (2017) Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160138.
DOI URL |
[6] |
DeWalt SJ, Denslow JS, Hamrick JL (2004) Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta. Oecologia, 138, 521-531.
PMID |
[7] |
Faizal A, Geelen D (2013) Saponins and their role in biological processes in plants. Phytochemistry Reviews, 12, 877-893.
DOI URL |
[8] |
Gunn S, Farrar JF, Collis BE, Nason M (1999) Specific leaf area in barley: Individual leaves versus whole plants. New Phytologist, 143, 45-51.
DOI URL |
[9] |
Harvey LDD (1995) Warm days, hot nights. Nature, 377, 15-16.
DOI URL |
[10] |
Hawkins NJ (2018) Digest: Plants adapt under attack: Genotypic selection and phenotypic plasticity under herbivore pressure. Evolution, 72, 1184-1185.
DOI URL |
[11] |
He WM, Li JJ, Peng PH (2012) Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges. PLoS ONE, 7, e31170.
DOI URL |
[12] |
Holm LG, Weldon LW, Blackburn RD (1969) Aquatic weeds. Science, 166, 699-709.
PMID |
[13] |
Huang HY, Zhu ZC, Wu JH, La Q, Zhou YH, Pan XY (2021) Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming: Introduced vs. native populations. Biodiversity Science, 29, 419-427. (in Chinese with English abstract)
DOI URL |
[黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云 (2021) 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较. 生物多样性, 29, 419-427.]
DOI |
|
[14] |
Hyldgaard B, Brix H (2012) Intraspecies differences in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum. Aquatic Botany, 97, 49-56.
DOI URL |
[15] | Janion-Scheepers C, Phillips L, Sgrò CM, Duffy GA, Hallas R, Chown SL (2018) Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proceedings of the National Academy of the Sciences, USA, 115, 145-150. |
[16] | Llorens L, Peñuelas J, Beier C, Emmett B, Estiarte M, Tietema A (2004) Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems, 7, 613-624. |
[17] |
Lucob-Agustin N, Kawai T, Kano-Nakata M, Suralta RR, Niones JM, Hasegawa T, Inari-Ikeda M, Yamauchi A, Inukai Y (2021) Morpho-physiological and molecular mechanisms of phenotypic root plasticity for rice adaptation to water stress conditions. Breeding Science, 71, 20-29.
DOI PMID |
[18] |
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F,van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692.
DOI PMID |
[19] |
Pan XY, Geng YP, Sosa A, Zhang WJ, Li B, Chen JK (2007) Invasive Alternanthera philoxeroides: Biology, ecology and management. Acta Phytotaxonomica Sinica, 45, 884-900. (in Chinese with English abstract)
DOI URL |
[潘晓云, 耿宇鹏, Alejandro Sosa, 张文驹, 李博, 陈家宽 (2007) 入侵植物喜旱莲子草--生物学、生态学及管理. 植物分类学报, 45, 884-900.] | |
[20] | Pigliucci M (2001) Phenotypic Plasticity:Beyond Nature and Nurture. Johns Hopkins University Press, Baltimore. |
[21] |
Ren GQ, Yang HY, Li J, Prabakaran K, Dai ZC, Wang XP, Jiang K, Zou CB, Du DL (2020) The effect of nitrogen and temperature changes on Solidago canadensis phenotypic plasticity and fitness. Plant Species Biology, 35, 283-299.
DOI URL |
[22] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL |
[23] | Sainty G, McCorkelle G, Julien M (1997) Control and spread of Alligator weed Alternanthera philoxeroides (Mart.) Griseb., in Australia: Lessons for other regions. Wetlands Ecology and Management, 5, 195-201. |
[24] |
Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
PMID |
[25] |
Shabani F, Ahmadi M, Kumar L, Solhjouy-Fard S, Shafapour Tehrany M, Shabani F, Kalantar B, Esmaeili A (2020) Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecological Indicators, 116, 106436.
DOI URL |
[26] |
Shaw MR, Loik ME, Harte J (2000) Gas exchange and water relations of two Rocky Mountain shrub species exposed to a climate change manipulation. Plant Ecology, 146, 195-204.
DOI URL |
[27] |
Sorte CJB, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters, 16, 261-270.
DOI URL |
[28] | Tang ME, Zhang QY, Zhang YC (2020) Warming affects the invasion ability and competitiveness of the invasive plant Alternanthera philoxeroides. Pratacultural Science, 37, 1047-1057. |
[29] |
Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7, 581-591.
PMID |
[30] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL |
[31] |
Winkler E, Fischer M (1999) Two fitness measures for clonal plants and the importance of spatial aspects. Plant Ecology, 141, 191-199.
DOI URL |
[32] |
Yang Y, Liu M, Pan YF, Huang HY, Pan XY, Sosa A, Hou YP, Zhu ZC, Li B (2021) Rapid evolution of latitudinal clines in growth and defence of an invasive weed. New Phytologist, 230, 845-856.
DOI PMID |
[33] |
Yu LR, Zhu ZC, Pan XY (2020) Phenotypic plasticity of Alternanthera philoxeroides in response to root neighbors of kin: Introduced vs. native genotypes. Biodiversity Science, 28, 651-657. (in Chinese with English abstract)
DOI URL |
[于良瑞, 朱政财, 潘晓云 (2020) 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较. 生物多样性, 28, 651-657.]
DOI |
|
[34] | Zhang L, Qiu XY, Tu YL, Weng XM, Luo J (2018) Three alien species and one new record of wild species in Tibet. Journal of Plant Resources and Environment, 27, 113-114. (in Chinese with English abstract) |
[张丽, 仇晓玉, 土艳丽, 文雪梅, 罗建 (2018) 西藏外来植物3种及野生植物新纪录1种. 植物资源与环境学报, 27, 113-114.] | |
[35] |
Zhou XH, He WM (2020) Climate warming facilitates seed germination in native but not invasive Solidago canadensis populations. Frontiers in Ecology and Evolution, 8, 595214.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn