Biodiv Sci ›› 2021, Vol. 29 ›› Issue (10): 1348-1357. DOI: 10.17520/biods.2021121
• Original Papers: Animal Diversity • Previous Articles Next Articles
Received:
2021-04-01
Accepted:
2021-05-11
Online:
2021-10-20
Published:
2021-10-20
Contact:
Feng Sun
Chengjun Song, Feng Sun. Effects of Zanthoxylum bungeanum agroforestry systems on soil microbial and nematode communities under drought[J]. Biodiv Sci, 2021, 29(10): 1348-1357.
恢复时间 Recovery days | 种植模式 Planting system | 处理 Treatment | 土壤含水量 SWC (%) | 铵态氮 NH4+-N (mg/kg) | 硝态氮 NO3--N (mg/kg) | 溶解性有机碳 DOC (mg/kg) | 溶解性有机氮 DON (mg/kg) |
---|---|---|---|---|---|---|---|
0天 | Z | 对照 Control | 18.63 ± 0.80 | 4.16 ± 0.41 | 17.81 ± 0.45 | 212.88 ± 1.06 | 55.25 ± 0.49 |
0 day | 干旱 Drought | 12.47 ± 0.48 | 3.53 ± 0.84 | 25.16 ± 1.24 | 213.38 ± 4.65 | 59.30 ± 3.84 | |
Z-M | 对照 Control | 19.42 ± 0.67 | 6.07 ± 0.86 | 24.94 ± 0.71 | 237.94 ± 7.07 | 64.89 ± 2.25 | |
干旱 Drought | 13.33 ± 0.64 | 4.29 ± 0.99 | 27.40 ± 3.07 | 229.45 ± 4.16 | 65.06 ± 2.17 | ||
Z-G | 对照 Control | 19.14 ± 0.54 | 4.31 ± 0.49 | 25.19 ± 1.12 | 229.37 ± 1.98 | 62.83 ± 0.89 | |
干旱 Drought | 12.76 ± 0.55 | 3.98 ± 0.66 | 17.14 ± 1.82 | 198.59 ± 3.09 | 55.25 ± 1.68 | ||
15天 | Z | 对照 Control | 18.10 ± 0.53 | 3.06 ± 0.15 | 21.22 ± 0.70 | 195.66 ± 9.98 | 49.88 ± 0.43 |
15 days | 干旱 Drought | 18.40 ± 0.59 | 3.18 ± 0.08 | 30.92 ± 1.84 | 191.35 ± 4.19 | 50.34 ± 2.14 | |
Z-M | 对照 Control | 19.74 ± 1.21 | 4.16 ± 0.28 | 26.57 ± 2.40 | 263.98 ± 42.91 | 61.58 ± 4.50 | |
干旱 Drought | 19.63 ± 0.64 | 3.33 ± 0.14 | 27.80 ± 2.05 | 237.18 ± 10.26 | 60.00 ± 2.31 | ||
Z-G | 对照 Control | 18.93 ± 0.94 | 3.43 ± 0.19 | 28.56 ± 2.01 | 196.09 ± 13.38 | 55.99 ± 1.18 | |
干旱 Drought | 19.00 ± 0.89 | 3.10 ± 0.12 | 22.61 ± 0.66 | 165.92 ± 3.99 | 57.34 ± 1.38 | ||
30天 | Z | 对照 Control | 18.03 ± 0.57 | 3.65 ± 0.18 | 18.72 ± 1.15 | 174.54 ± 15.17 | 51.79 ± 1.04 |
30 days | 干旱 Drought | 17.13 ± 0.52 | 3.15 ± 0.10 | 30.93 ± 1.52 | 170.91 ± 8.35 | 50.50 ± 1.89 | |
Z-M | 对照 Control | 19.34 ± 0.96 | 4.65 ± 0.22 | 27.97 ± 1.62 | 188.71 ± 11.75 | 58.00 ± 3.69 | |
干旱 Drought | 18.13 ± 0.58 | 3.29 ± 0.15 | 27.45 ± 2.01 | 189.41 ± 8.67 | 55.87 ± 1.14 | ||
Z-G | 对照 Control | 19.24 ± 0.76 | 3.99 ± 0.22 | 25.76 ± 1.19 | 173.52 ± 4.84 | 52.48 ± 4.58 | |
干旱 Drought | 18.30 ± 0.95 | 3.09 ± 0.17 | 23.90 ± 1.31 | 171.47 ± 9.69 | 54.09 ± 3.18 | ||
45天 | Z | 对照 Control | 17.91 ± 0.36 | 2.31 ± 0.62 | 18.57 ± 2.24 | 152.36 ± 2.17 | 48.04 ± 2.49 |
45 days | 干旱 Drought | 17.27 ± 0.32 | 1.88 ± 0.39 | 26.03 ± 2.58 | 154.61 ± 3.95 | 48.42 ± 2.48 | |
Z-M | 对照 Control | 19.45 ± 0.80 | 1.98 ± 0.66 | 23.25 ± 1.27 | 179.35 ± 5.66 | 52.89 ± 3.81 | |
干旱 Drought | 19.37 ± 1.06 | 1.94 ± 0.54 | 27.67 ± 2.46 | 181.62 ± 12.04 | 54.93 ± 3.07 | ||
Z-G | 对照 Control | 19.52 ± 1.19 | 2.27 ± 0.64 | 21.98 ± 2.54 | 165.24 ± 7.26 | 53.20 ± 1.75 | |
干旱 Drought | 18.30 ± 0.59 | 2.09 ± 0.44 | 23.25 ± 1.92 | 167.78 ± 9.66 | 53.12 ± 3.36 | ||
双因素重复测量方差分析 Two-way repeated ANOVA | |||||||
Z | ns | ns | ns | P = 0.007 | ns | ns | |
Z-M | ns | ns | ns | ns | ns | ns | |
Z-G | ns | ns | ns | ns | ns | ns |
Table 1 Soil chemical properties in monocultures of the focal species Zanthoxylum bungeanum, mixed cultures of Z. bungeanum and Medicago sativa, and mixed cultures of Z. bungeanum and Glycine max at each sampling time.
恢复时间 Recovery days | 种植模式 Planting system | 处理 Treatment | 土壤含水量 SWC (%) | 铵态氮 NH4+-N (mg/kg) | 硝态氮 NO3--N (mg/kg) | 溶解性有机碳 DOC (mg/kg) | 溶解性有机氮 DON (mg/kg) |
---|---|---|---|---|---|---|---|
0天 | Z | 对照 Control | 18.63 ± 0.80 | 4.16 ± 0.41 | 17.81 ± 0.45 | 212.88 ± 1.06 | 55.25 ± 0.49 |
0 day | 干旱 Drought | 12.47 ± 0.48 | 3.53 ± 0.84 | 25.16 ± 1.24 | 213.38 ± 4.65 | 59.30 ± 3.84 | |
Z-M | 对照 Control | 19.42 ± 0.67 | 6.07 ± 0.86 | 24.94 ± 0.71 | 237.94 ± 7.07 | 64.89 ± 2.25 | |
干旱 Drought | 13.33 ± 0.64 | 4.29 ± 0.99 | 27.40 ± 3.07 | 229.45 ± 4.16 | 65.06 ± 2.17 | ||
Z-G | 对照 Control | 19.14 ± 0.54 | 4.31 ± 0.49 | 25.19 ± 1.12 | 229.37 ± 1.98 | 62.83 ± 0.89 | |
干旱 Drought | 12.76 ± 0.55 | 3.98 ± 0.66 | 17.14 ± 1.82 | 198.59 ± 3.09 | 55.25 ± 1.68 | ||
15天 | Z | 对照 Control | 18.10 ± 0.53 | 3.06 ± 0.15 | 21.22 ± 0.70 | 195.66 ± 9.98 | 49.88 ± 0.43 |
15 days | 干旱 Drought | 18.40 ± 0.59 | 3.18 ± 0.08 | 30.92 ± 1.84 | 191.35 ± 4.19 | 50.34 ± 2.14 | |
Z-M | 对照 Control | 19.74 ± 1.21 | 4.16 ± 0.28 | 26.57 ± 2.40 | 263.98 ± 42.91 | 61.58 ± 4.50 | |
干旱 Drought | 19.63 ± 0.64 | 3.33 ± 0.14 | 27.80 ± 2.05 | 237.18 ± 10.26 | 60.00 ± 2.31 | ||
Z-G | 对照 Control | 18.93 ± 0.94 | 3.43 ± 0.19 | 28.56 ± 2.01 | 196.09 ± 13.38 | 55.99 ± 1.18 | |
干旱 Drought | 19.00 ± 0.89 | 3.10 ± 0.12 | 22.61 ± 0.66 | 165.92 ± 3.99 | 57.34 ± 1.38 | ||
30天 | Z | 对照 Control | 18.03 ± 0.57 | 3.65 ± 0.18 | 18.72 ± 1.15 | 174.54 ± 15.17 | 51.79 ± 1.04 |
30 days | 干旱 Drought | 17.13 ± 0.52 | 3.15 ± 0.10 | 30.93 ± 1.52 | 170.91 ± 8.35 | 50.50 ± 1.89 | |
Z-M | 对照 Control | 19.34 ± 0.96 | 4.65 ± 0.22 | 27.97 ± 1.62 | 188.71 ± 11.75 | 58.00 ± 3.69 | |
干旱 Drought | 18.13 ± 0.58 | 3.29 ± 0.15 | 27.45 ± 2.01 | 189.41 ± 8.67 | 55.87 ± 1.14 | ||
Z-G | 对照 Control | 19.24 ± 0.76 | 3.99 ± 0.22 | 25.76 ± 1.19 | 173.52 ± 4.84 | 52.48 ± 4.58 | |
干旱 Drought | 18.30 ± 0.95 | 3.09 ± 0.17 | 23.90 ± 1.31 | 171.47 ± 9.69 | 54.09 ± 3.18 | ||
45天 | Z | 对照 Control | 17.91 ± 0.36 | 2.31 ± 0.62 | 18.57 ± 2.24 | 152.36 ± 2.17 | 48.04 ± 2.49 |
45 days | 干旱 Drought | 17.27 ± 0.32 | 1.88 ± 0.39 | 26.03 ± 2.58 | 154.61 ± 3.95 | 48.42 ± 2.48 | |
Z-M | 对照 Control | 19.45 ± 0.80 | 1.98 ± 0.66 | 23.25 ± 1.27 | 179.35 ± 5.66 | 52.89 ± 3.81 | |
干旱 Drought | 19.37 ± 1.06 | 1.94 ± 0.54 | 27.67 ± 2.46 | 181.62 ± 12.04 | 54.93 ± 3.07 | ||
Z-G | 对照 Control | 19.52 ± 1.19 | 2.27 ± 0.64 | 21.98 ± 2.54 | 165.24 ± 7.26 | 53.20 ± 1.75 | |
干旱 Drought | 18.30 ± 0.59 | 2.09 ± 0.44 | 23.25 ± 1.92 | 167.78 ± 9.66 | 53.12 ± 3.36 | ||
双因素重复测量方差分析 Two-way repeated ANOVA | |||||||
Z | ns | ns | ns | P = 0.007 | ns | ns | |
Z-M | ns | ns | ns | ns | ns | ns | |
Z-G | ns | ns | ns | ns | ns | ns |
Fig. 2 Principal component analysis (PCA) of the microbial community. SWC is soil water content; DOC and DON are the dissolved organic carbon and nitrogen, respectively. Circle indicates the monoculture of Zanthoxylum bungeanum, diamond indicates the mixed cultures of Z. bungeanum and Medicago sativa, triangle indicates the mixed cultures of Z. bungeanum and Glycine max. Black, green, purple and blue symbols represent 0, 15, 30 and 45 days of recovery after drought, respectively. Hollow indicates control, solid indicates drought.
Fig. 3 Principal component analysis (PCA) of the nematode community. SWC, Soil water content; DOC, Dissolved organic carbon; DON, Dissolved organic nitrogen. The meaning of the symbol is shown in fig. 2. Black, green, purple and blue symbols represent 0, 15, 30 and 45 days of recovery after drought, respectively. Hollow indicates control, solid indicates drought. Abbreviations correspond to the nematode taxa were listed: Tyl1, Tylenchus; Mal, Malenchus; Psi, Psilenchus; Agl, Aglenchus; Fil, Filenchus; Cos, Coslenchus; Lel, Lelenchus; Bol, Boleodorus; Par, Paratylenchus; Neo, Neothada; Pra, Pratylenchus; Tyl2, Tylenchorhynchus; Cri, Criconemoides; Mel, Meloidogyne; Hel, Helicotylenchus; Lon, Longidorus; Xip, Xiphinema; Rha, Rhabditis; Mes2, Mesorhabditis; Odo, Odontolaimus; Gla, Glauxinema; Acr1, Acrobeles; Acr2, Acrobeloides; Cep, Cephalobus; Euc, Eucephalobus; Ple, Plectus; Ana, Anaplectus; Chi, Chiloplacus; Cer, Cervidellus; Chr, Chronogaster; Bas, Bastiania; Pri, Prismatolaimus; Ala, Alaimus; Amp, Amphidelus; Aph1, Aphelenchoides; Aph2, Aphelenchus; Dit, Ditylenchus, Dip, Diphtherophora; Tyl3, Tylencholaimus; Tri, Tripyla; Myl, Mylonchulus; Ach, Achromadora; Tho, Thonus; Eud, Eudorylaimus; Mic, Microdorylaimus; Pun, Pungentus; Mes1, Mesodorylaimus; Lai, Laimydorus; Apo, Aporcelaimellus.
Fig. 5 Principal response curves with weights of density of each soil nematode functional guild under different planting systems in control and drought. The horizontal axis represents the control treatment, Ba, Bacterivores; Fu, Fungivores; Op, Omnivore-predators; He, Herbivores. The number of 1, 2, 3, 4 and 5 are cp value of nematode genera.
[1] |
Alster CJ, German DP, Lu Y, Allison SD (2013) Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biology and Biochemistry, 64, 68-79.
DOI URL |
[2] |
Anderson SH, Udawatta RP, Seobi T, Garrett HE (2009) Soil water content and infiltration in agroforestry buffer strips. Agroforestry Systems, 75, 5-16.
DOI URL |
[3] |
Andrés P, Moore JC, Simpson RT, Selby G, Cotrufo F, Denef K, Haddix ML, Shaw EA de Tomasel CM, Molowny-Horas R, Wall DH (2016) Soil food web stability in response to grazing in a semi-arid prairie: The importance of soil textural heterogeneity. Soil Biology and Biochemistry, 97, 131-143.
DOI URL |
[4] |
Bertness MD, Callaway R (1994) Positive interactions in communities. Trends in Ecology and Evolution, 9, 191-193.
DOI PMID |
[5] | Bongers T (1988) De Nematoden van Nederland. Pirola, Schoorl, the Netherlands. |
[6] |
Borken W, Savage K, Davidson EA, Trumbore SE (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology, 12, 177-193.
DOI URL |
[7] |
Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 35, 265-278.
PMID |
[8] |
Burgess SSO, Adams MA, Turner NC, White DA, Ong CK (2001) Tree roots: Conduits for deep recharge of soil water. Oecologia, 126, 158-165.
DOI URL |
[9] |
Dai AG (2013) Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52-58.
DOI URL |
[10] |
Daryanto S, Wang LX, Jacinthe PA (2017) Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management, 179, 18-33.
DOI URL |
[11] |
de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2, 276-280.
DOI URL |
[12] | de Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 4, 1-16. |
[13] |
Frostegård A, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biology and Biochemistry, 28, 55-63.
DOI URL |
[14] |
Grant K, Kreyling J, Heilmeier H, Beierkuhnlein C, Jentsch A (2014) Extreme weather events and plant-plant interactions: Shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecological Research, 29, 991-1001.
DOI URL |
[15] |
Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biology and Biochemistry, 50, 167-173.
DOI URL |
[16] | IUSS Working Group WRB (2007) World Soil Resources Reports no. 103. FAO, Rome. |
[17] |
Khan MASA, Grant K, Beierkuhnlein C, Kreyling J, Jentsch A (2014) Climatic extremes lead to species-specific legume facilitation in an experimental temperate grassland. Plant and Soil, 379, 161-175.
DOI URL |
[18] |
Kreyling J, Beierkuhnlein C, Elmer M, Pritsch K, Radovski M, Schloter M, Wöllecke J, Jentsch A (2008) Soil biotic processes remain remarkably stable after 100-year extreme weather events in experimental grassland and heath. Plant and Soil, 308, 175-188.
DOI URL |
[19] | Lepš J, Šmilauer P (2003) Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, New York. |
[20] |
Lindberg N, Bengtsson J (2006) Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos, 114, 494-506.
DOI URL |
[21] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294, 804-808.
PMID |
[22] |
Maraldo K, Holmstrup M (2009) Recovery of enchytraeid populations after severe drought events. Applied Soil Ecology, 42, 227-235.
DOI URL |
[23] |
Narain P, Singh RK, Sindhwal NS, Joshie P (1998) Water balance and water use efficiency of different land uses in western Himalayan valley region. Agricultural Water Management, 37, 225-240.
DOI URL |
[24] |
Orwin KH, Wardle DA (2005) Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant and Soil, 278, 205-221.
DOI URL |
[25] |
Papatheodorou EM, Kordatos H, Kouseras T, Monokrousos N, Menkissoglu-Spiroudi U, Diamantopoulos J, Stamou GP, Argyropoulou MD (2012) Differential responses of structural and functional aspects of soil microbes and nematodes to abiotic and biotic modifications of the soil environment. Applied Soil Ecology, 61, 26-33.
DOI URL |
[26] |
Rivest D, Paquette A, Shipley B, Reich PB, Messier C (2015) Tree communities rapidly alter soil microbial resistance and resilience to drought. Functional Ecology, 29, 570-578.
DOI URL |
[27] |
Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011) Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Applied Soil Ecology, 48, 38-44.
DOI URL |
[28] |
Shao YH, Fu SL (2007) The diversity and functions of soil nematodes. Biodiversity Science, 15, 116-123. (in Chinese with English abstract)
DOI URL |
[邵元虎, 傅声雷 (2007) 试论土壤线虫多样性在生态系统中的作用. 生物多样性, 15, 116-123.]
DOI |
|
[29] | Shi LL, Fu SL (2014) Review of soil biodiversity research: History, current status and future challenges. Chinese Science Bulletin, 59, 493-509. (in Chinese with English abstract) |
[时雷雷, 傅声雷 (2014) 土壤生物多样性研究: 历史、现状与挑战. 科学通报, 59, 493-509.] | |
[30] |
Stevnbak K, Scherber C, Gladbach DJ, Beier C, Mikkelsen TN, Christensen S (2012) Interactions between above- and belowground organisms modified in climate change experiments. Nature Climate Change, 2, 805-808.
DOI URL |
[31] |
Sun F, Pan KW, Tariq A, Zhang L, Sun XM, Li ZL, Wang SZ, Xiong QL, Song DG, Olatunji OA (2016) The response of the soil microbial food web to extreme rainfall under different plant systems. Scientific Reports, 6, 37662.
DOI URL |
[32] |
Townshend JL (1963) A modification and evaluation of the apparatus for the oostenbrink direct cottonwool filter extraction method. Nematologica, 9, 106-110.
DOI URL |
[33] |
Viketoft M, Bengtsson J, Sohlenius B, Berg MP, Petchey O, Palmborg C, Huss-Danell K (2009) Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology, 90, 90-99.
PMID |
[34] |
Wallenstein MD, Hall EK (2012) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry, 109, 35-47.
DOI URL |
[35] |
Wang ZY, Silva LCR, Sun G, Luo P, Mou CX, Horwath WR (2015) Quantifying the impact of drought on soil-plant interactions: A seasonal analysis of biotic and abiotic controls of carbon and nutrient dynamics in high-altitudinal grasslands. Plant and Soil, 389, 59-71.
DOI URL |
[36] | Xu K, Yang DW, Yang HB, Li Z, Qin Y, Shen Y (2015) Spatio-temporal variation of drought in China during 1961-2012: A climatic perspective. Journal of Hydrology, 526, 253-264. |
[37] |
Zhao J, Wang XL, Wang XL, Fu SL (2014) Legume-soil interactions: Legume addition enhances the complexity of the soil food web. Plant and Soil, 385, 273-286.
DOI URL |
[1] | Zhu Yao, Xue Wei, Jinhao Ma, Xiao Ren, Yuying Wang, Lei Hu, Pengfei Wu. Short-term effects of warming and wetting on the soil nematode communities in the alpine meadow [J]. Biodiv Sci, 2024, 32(5): 23483-. |
[2] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[3] | Shuhan Yang, He Wang, Lei Chen, Yingfei Liao, Guang Yan, Yining Wu, Hongfei Zou. Effects of heterogeneous habitat on soil nematode community characteristics in the Songnen Plain [J]. Biodiv Sci, 2024, 32(1): 23295-. |
[4] | Chunling Wu, Zhuhui Luo, Yide Li, Han Xu, Dexiang Chen, Qiong Ding. Foliar endophytic bacterial communities of woody Fabaceae and Lauraceae plants in tropical mountain rainforests: Understanding species and functional diversity and their driving factors [J]. Biodiv Sci, 2023, 31(8): 23146-. |
[5] | Helu Zhang, Meihong Zhao, Shichun Sun, Xiaoshou Liu. Diversity and community characteristics of free-living nematodes in plateau salt lakes in Nagqu City, Tibet [J]. Biodiv Sci, 2023, 31(5): 22533-. |
[6] | Shiyun Shen, Yuanfei Pan, Liru Chen, Yanli Tu, Xiaoyun Pan. Plant-soil feedbacks differ between native and introduced populations of Alternanthera philoxeroides [J]. Biodiv Sci, 2023, 31(3): 22436-. |
[7] | Wen Zhao, Dandan Wang, Mumin Reyila, Kaichuan Huang, Shun Liu, Baokai Cui. Soil microbial community structure of Larix gmelinii forest in the Aershan area [J]. Biodiv Sci, 2023, 31(2): 22258-. |
[8] | Jinhua Liu, Feng Li, Tao Tian, Haifeng Xiao. Response of soil bacteria and nematodes to litter identity and diversity of dominant plants in a tropical rainforest [J]. Biodiv Sci, 2023, 31(11): 23276-. |
[9] | Bing Yan, Qing Lu, Song Xia, Junsheng Li. An overview of advances in soil microbial diversity of urban environment [J]. Biodiv Sci, 2022, 30(8): 22186-. |
[10] | Nan Ye, Beibei Hou, Chao Wang, Ruiwu Wang, Jianxiao Song. Spatial self-organization in microbial interactions [J]. Biodiv Sci, 2022, 30(5): 21458-. |
[11] | Peng Xu, Xiaoying Rong, Chaohong Liu, Fang Du, Benfeng Yin, Ye Tao, Yuanming Zhang. Effects of extreme drought on community and ecological network of soil fungi in a temperate desert [J]. Biodiv Sci, 2022, 30(3): 21327-. |
[12] | Ping Liu, Hongwen Liu, Miao Zhang, Yan Gao, Mengting Zhang, Aizhen Liang, Shixiu Zhang. Latitude distribution and associated environmental factors of soil nematodes in a typical black soil region [J]. Biodiv Sci, 2022, 30(12): 22269-. |
[13] | Wenjia Wu, Ye Yuan, Jing Zhang, Lixia Zhou, Jun Wang, Hai Ren, Zhanfeng Liu. Dynamics of soil nematode community during the succession of forests in southern subtropical China [J]. Biodiv Sci, 2022, 30(12): 22205-. |
[14] | Huiling Hu, Zhiyuan Yao, Shibin Gao, Bo Zhu. Nematode response to long-term fertilization in purple soil [J]. Biodiv Sci, 2022, 30(12): 22189-. |
[15] | Xiaotong Liu, Yijia Tian, Hanwen Liu, Cuiying Liang, Siwei Jiang, Wenju Liang, Xiaoke Zhang. Seasonal variation in cropland soil nematode community composition in the lower reaches of Liaohe Plain [J]. Biodiv Sci, 2022, 30(12): 22222-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn