Biodiv Sci ›› 2019, Vol. 27 ›› Issue (5): 543-556.  DOI: 10.17520/biods.2018214

Special Issue: 青藏高原生物多样性与生态安全 物种形成与系统进化

• Original Papers • Previous Articles     Next Articles

Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding

Shao Xinning1,2,Song Dazhao3,Huang Qiaowen3,Li Sheng1,2,Yao Meng1,2,*()   

  1. 1 School of Life Sciences, Peking University, Beijing 100871
    2 Institute of Ecology, Peking University, Beijing 100871
    3 Chinese Felid Conservation Alliance, Beijing 101011
  • Received:2018-08-03 Accepted:2019-01-25 Online:2019-05-20 Published:2019-05-20
  • Contact: Yao Meng

Abstract:

Large carnivores play an important role in the regulation of food-web structure and ecosystem functioning. However, large carnivores face serious threats that have caused declines in their populations and geographic ranges due to habitat loss and degradation, hunting, human disturbance and pathogen transmission. Conservation of large carnivore species richness and population size has become a pressing issue and an important research focus of conservation biology. The western Sichuan Plateau, located at the intersection of the mountains of southwest China and the eastern margin of the Tibetan Plateau, is a global biodiversity hotspot and has high carnivore species richness. However, increasing human activities may exacerbate the destruction of local flora and fauna, thereby threatening the survival of wild carnivores. Information on species composition and dietary habits can improve our understanding of the structure and function of the ecosystem and food-web relationships in the study area. In addition, species composition and dietary habits are of great significance for understanding multi-species coexistence mechanisms and preserving biodiversity. This study collected carnivore fecal samples from Xinlong and Shiqu counties in the Ganzi Tibetan Autonomous Prefecture, Sichuan Province. DNA was then extracted from the samples and the species was identified based on DNA sequences and DNA barcoding techniques. Seven carnivores were identified, including five large carnivores (Canis lupus, Ursus arctos, Panthera pardus, P. uncia and Canis lupus familiaris) and two medium and small-sized carnivores (Prionailurus bengalensis and Vulpes vulpes). Using fecal DNA, high-throughput sequencing and metabarcoding, we conducted diet analysis for the seven carnivores and found 28 different food molecular operational taxonomic units (MOTUs), including 19 mammals, eight birds and one fish species. The predominant prey categories of wolves, dogs and brown bears were ungulates. The domestic yak (Bos grunniens) was the most frequently identified prey species. Small mammals such as rodents and lagomorphs accounted for a significant proportion in the diets of leopard cats and red foxes, The most frequent prey of this category of carnivore were the Chinese scrub vole (Neodon irene) and plateau pika (Ochotona curzoniae). In addition, leopards and snow leopards mainly fed on the Chinese goral (Naemorhedus griseus) and blue sheep (Pseudois nayaur), respectively. Our study highlights the utility of fecal DNA and metabarcoding technique in fast carnivore surveys and high-throughput diet analysis, and provides a technical reference and guidance for future biodiversity surveys and food-web studies.

Key words: biodiversity inventory, mammalian survey, non-invasive sampling, DNA barcoding, food-web