Biodiv Sci ›› 2018, Vol. 26 ›› Issue (1): 89-95. DOI: 10.17520/biods.2017228
• Forum • Previous Articles Next Articles
Yuxue Pan, Yu Tian*(), Jing Xu, Boya Zhang, Junsheng Li
Received:
2017-08-28
Accepted:
2017-11-05
Online:
2018-01-20
Published:
2018-05-05
Contact:
Tian Yu
About author:
# Co-first authors
Yuxue Pan,Yu Tian,Jing Xu,Boya Zhang,Junsheng Li. Methodological assessment on scenarios and models of biodiversity and ecosystem services and impacts on China within the IPBES framework[J]. Biodiv Sci, 2018, 26(1): 89-95.
不同空间尺度的应用 Application at different spatial scales | 全球 Global | 国家: 英国 National: United Kingdom | 区域: 涵盖柬埔寨、中国、老挝、泰国和越南 Regional: analysis covers Cambodia, China, Laos, Thailand and Viet Nam | 国家: 南非 National: Coastal fisheries of South Africa |
---|---|---|---|---|
使用情景和模型解决的问题 Issues addressed using scenarios and models | 爱知目标能否在2020年前完成?达成2050年《生物多样性公约》的战略远景需要什么? Are the Aichi Biodiversity Targets likely to be attained by 2020? What is needed to achieve the strategic vision for 2050 of the Convention on Biological Diversity? | 50年后, 英国的生态系统、生态系统服务和服务价值将会出现怎样的变化? What changes might occur in ecosystems, ecosystem services and the values of these services over the next 50 years in the United Kingdom? | 评估大坝工程, 特别是湄公河干流的工程造成的社会和环境影响 Evaluating social and environmental impacts of dam construction, especially in the main stream of the Mekong River | 可持续渔业管理政策的实施 Implementation of policy on sustainable management of fisheries |
开展的项目 Projects | 《全球生物多样性展望第四版(2014)》 Global Biodiversity Outlook 4 (2014) | 《英国国家生态系统评估(2011)》 United Kingdom National | 《湄公河干流水电建设战略性环境评估》 Strategic Environmental Assessment of Hydropower on the Mekong Mainstream | 《南非渔业管理》 South African Fisheries Management |
时间范围 Time horizons | 至2020年、2050年 Present-2020, 2050 | 2060年 2060 | 2030年 2030 | 至2034年, 每2-4年更新一次 Present-2034, updated every 2-4 years |
决策支持工具 Decision-support tools | 无 None | 无, 但正在开发工具 None, but tools are being developed | 战略性环境评估方法 Strategic environmental assessment methods | 管理战略评估 Management strategy evaluation |
优势 Strengths | (1)在短期项目中创造性使用推断方法 ; (2) 清晰的决策背景和授权环境。 (1) Novel use of extrapolations for nearterm projections; (2) Clear decision context and authorizing environment | 重点关注生态系统服务之间的协同增效和权衡取舍以及价值评估 Focusing on synergies and trade-offs between ecosystem services and on monetary evaluation | (1)清晰的决策背景和授权环境; (2)利益攸关方的大力参与(1) Clear decision context and authorizing environment; (2) Strong involvement of stakeholders | (1)清晰的决策背景和授权环境; (2)政策和管理建议清晰, 且定期更新 (1) Clear decision context and authorizing environment; (2) Policy and management advice clear and updated regularly |
劣势 Weaknesses | (1)重点关注全球尺度评估, 不适于国家和地方决策背景; (2)缺乏普适性的情景和驱动因素模型, 难以开展跨目标分析 (1) Focusing on global scale limits applicability to many national and local decision contexts; (2) Lack of common scenarios and models of drivers makes analysis across targets difficult | (1)严重依赖驱动因素影响的定性评估; (2)未充分体现物种水平上的生物多样性(仅有鸟类) (1) Heavy reliance on qualitative estimates of impacts of drivers; (2) Biodiversity at species level weakly represented (only birds) | (1)情景过于特殊, 尤其是使用的经验模型, 因此很难推广或外推到更大尺度; (2)湄公河委员会的建议不具备约束力 (1) Highly context-specific, especially the empirical models used, and therefore difficult to generalize or extrapolate to larger scales; (2) Mekong River Commission recommendations non-binding | (1)情景过于特殊; (2)未考虑若干关键驱动因素(如气候变化) (1) Highly context-specific; (2) Several key drivers (e.g., climate change) not considered |
Table 1 Application practices of scenarios and models of biodiversity and ecosystem services (adopted from Ferrier et al, 2016)
不同空间尺度的应用 Application at different spatial scales | 全球 Global | 国家: 英国 National: United Kingdom | 区域: 涵盖柬埔寨、中国、老挝、泰国和越南 Regional: analysis covers Cambodia, China, Laos, Thailand and Viet Nam | 国家: 南非 National: Coastal fisheries of South Africa |
---|---|---|---|---|
使用情景和模型解决的问题 Issues addressed using scenarios and models | 爱知目标能否在2020年前完成?达成2050年《生物多样性公约》的战略远景需要什么? Are the Aichi Biodiversity Targets likely to be attained by 2020? What is needed to achieve the strategic vision for 2050 of the Convention on Biological Diversity? | 50年后, 英国的生态系统、生态系统服务和服务价值将会出现怎样的变化? What changes might occur in ecosystems, ecosystem services and the values of these services over the next 50 years in the United Kingdom? | 评估大坝工程, 特别是湄公河干流的工程造成的社会和环境影响 Evaluating social and environmental impacts of dam construction, especially in the main stream of the Mekong River | 可持续渔业管理政策的实施 Implementation of policy on sustainable management of fisheries |
开展的项目 Projects | 《全球生物多样性展望第四版(2014)》 Global Biodiversity Outlook 4 (2014) | 《英国国家生态系统评估(2011)》 United Kingdom National | 《湄公河干流水电建设战略性环境评估》 Strategic Environmental Assessment of Hydropower on the Mekong Mainstream | 《南非渔业管理》 South African Fisheries Management |
时间范围 Time horizons | 至2020年、2050年 Present-2020, 2050 | 2060年 2060 | 2030年 2030 | 至2034年, 每2-4年更新一次 Present-2034, updated every 2-4 years |
决策支持工具 Decision-support tools | 无 None | 无, 但正在开发工具 None, but tools are being developed | 战略性环境评估方法 Strategic environmental assessment methods | 管理战略评估 Management strategy evaluation |
优势 Strengths | (1)在短期项目中创造性使用推断方法 ; (2) 清晰的决策背景和授权环境。 (1) Novel use of extrapolations for nearterm projections; (2) Clear decision context and authorizing environment | 重点关注生态系统服务之间的协同增效和权衡取舍以及价值评估 Focusing on synergies and trade-offs between ecosystem services and on monetary evaluation | (1)清晰的决策背景和授权环境; (2)利益攸关方的大力参与(1) Clear decision context and authorizing environment; (2) Strong involvement of stakeholders | (1)清晰的决策背景和授权环境; (2)政策和管理建议清晰, 且定期更新 (1) Clear decision context and authorizing environment; (2) Policy and management advice clear and updated regularly |
劣势 Weaknesses | (1)重点关注全球尺度评估, 不适于国家和地方决策背景; (2)缺乏普适性的情景和驱动因素模型, 难以开展跨目标分析 (1) Focusing on global scale limits applicability to many national and local decision contexts; (2) Lack of common scenarios and models of drivers makes analysis across targets difficult | (1)严重依赖驱动因素影响的定性评估; (2)未充分体现物种水平上的生物多样性(仅有鸟类) (1) Heavy reliance on qualitative estimates of impacts of drivers; (2) Biodiversity at species level weakly represented (only birds) | (1)情景过于特殊, 尤其是使用的经验模型, 因此很难推广或外推到更大尺度; (2)湄公河委员会的建议不具备约束力 (1) Highly context-specific, especially the empirical models used, and therefore difficult to generalize or extrapolate to larger scales; (2) Mekong River Commission recommendations non-binding | (1)情景过于特殊; (2)未考虑若干关键驱动因素(如气候变化) (1) Highly context-specific; (2) Several key drivers (e.g., climate change) not considered |
1 | Christensen V, Walters CJ, Pauly D (2005) Ecopath with Ecosim: A User’s Guide. Fisheries Centre, University of British Columbia, Vancouver. |
2 | Díaz S, Demissew S, Carabias J (2015a) The IPBES conceptual framework—connecting nature and people. Current Opinion in Environmental Sustainability, 14, 1-16. |
3 | Díaz S, Demissew S, Joly C, Lonsdale WM, Larigauderie A (2015b) A Rosetta Stone for nature’s benefits to people. PLoS Biology, 13, e1002040. |
4 | Ferrier S, Ninan KN, Leadley P, Alkemade R, Acosta LA, Akcakaya HR, Brotons L, Cheung WWL, Christensen V, Harhash KA, Kabubo-Mariara J, Lundquist C, Obersteiner M, Pereira HM, Peterson G, Pichs-Madruga R, Ravindranath N, Rondinini C, Wintle BA (2016) The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services. Secretariat of the Intergovernmental Platform for Biodiversity and Ecosystem Services, Bonn, Germany. |
5 | Fu BJ, Yu DD, Lü N (2017) An indicator system for biodiversity and ecosystem services evaluation in China. Acta Ecologica Sinica, 37, 341-348.(in Chinese with English abstract) |
[傅伯杰, 于丹丹, 吕楠 (2017) 中国生物多样性与生态系统服务评估指标体系. 生态学报, 37, 341-348.] | |
6 | Hotes S, Opgenoorth L (2014) Trust and control at the Science-Policy Interface in IPBES. BioScience, 64, 277-278. |
7 | Hove SVD, Chabason L (2009) The Debate on an Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Exploring Gaps and Needs. Institut Du Développement Durable Et Des Relations Internationales, |
8 | O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, Vuuren DPV (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122, 401-414. |
9 | Peh KSH, Balmford A, Bradbury RB, Brown C, Butchart SHM, Hughes FMR, Stattersfield A, Thomas DHL, Walpole M, Bayliss J, Gowing D, Jones JPG, Lewis SL, Mulligan M, Pandeya B, Stratford C, Thompson JR, Turner K, Vira B, Willcock S, Birch JC (2013) TESSA: a toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance. Ecosystem Services, 5, 51-57. |
10 | Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M, Mandle L, Hamel P, Vogl AL (2015) InVEST + VERSION + User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. |
11 | Stehfest E, Vuuren D, Kram T, Bouwman A, Alkemade R, Bakkenes M, Biemans H, Bouwman A, Elzen M, Janse J, Lucas P, van Minnen J, Müller M, Prins A (2014) Integrated Assessment of Global Environmental Change With IMAGE 3.0: Model Description and Policy Applications. PBL Netherlands Environmental Assessment Agency, The Hague. |
12 | Thaman R, Lyver P, Mpande R, Perez E, Cariño J, Takeuchi K (2013) The Contribution of Indigenous and Local Knowledge Systems to IPBES: Building Synergies With Science. United Nations Educational, Scientific and Cultural Organization, Paris. |
13 | Tian Y, Lan CZ, Xu J, Li XS, Li JS (2016), Assessment of pollination and China’s implementation strategies within the IPBES framework. Biodiversity Science, 24, 1084-1090.(in Chinese with English abstract) |
[田瑜, 兰存子, 徐靖, 李秀山, 李俊生 (2016) IPBES框架下的全球传粉评估及我国对策. 生物多样性, 24, 1084-1090.] | |
14 | Tian Y, Li JS, Lan CZ, Li XS (2015) Interpretation of the work programme of Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services for the period 2014-2018. Biodiversity Science, 23, 543-549.(in Chinese with English abstract) |
[田瑜, 李俊生, 兰存子, 李秀山 (2015) 生物多样性和生态系统服务政府间科学-政策平台2014-2018年工作方案解析. 生物多样性, 23, 543-549.] | |
15 | Trisurat Y (2013) Ecological Assessment: Assessing Conditions and Trends of Ecosystem Services of Thadee Watershed, Nakhon Si Thammarat Province. Final Report Submitted to the ECO-BEST Project. Bangkok, Faculty of Forestry, Kasetsart University. (in Thai with English abstract) |
16 | Tucker GM, Mcconville AJ, Mccoy K, Brink P, Braat LC, Arets E, Bräuer I, Gerdes H, Grunig M (2009) Scenarios and models for exploring future trends of biodiversity and ecosystem services changes. Final Report to the European Commission, DG Environment on Contract. Nuclear Fusion, 16, 16-17. |
17 | Villa F, Bagstad KJ, Voigt B, Johnson GW, Portela R, Honzák M, Batker D (2014) A methodology for adaptable and robust ecosystem services assessment. PLoS ONE, 9, e91001. |
18 | Villarreal ML, Norman LM, Boykin KG, Wallace CSA (2013) Biodiversity losses and conservation trade-offs: assessing future urban growth scenarios for a North American trade corridor. International Journal of Biodiversity Science, Ecosystem Services & Management, 9, 90-103. |
19 | Yu DD, Lü N, Fu BJ (2017) Indicator systems and methods for evaluating biodiversity and ecosystem services. Acta Ecologica Sinica, 37, 349-357.(in Chinese with English abstract) |
[于丹丹, 吕楠, 傅伯杰 (2017) 生物多样性与生态系统服务评估指标与方法. 生态学报, 37, 349-357.] | |
20 | Yue TX (2017) Principles and Methods for Simulating Earth’s Surface Systems. Science Press, Beijing.(in Chinese) |
[岳天祥 (2017) 地球表层系统模拟分析原理与方法. 科学出版社, 北京.] | |
21 | Yue TX, Liu Y, Zhao MW, Du ZP, Zhao N (2016) A fundamental theorem of Earth’s surface modelling. Environmental Earth Sciences, 75, 751. |
22 | Yue TX, Wang YF, Du ZP, Zhao MW, Zhang LL, Zhao N, Lou M, Larocqued GR, Wilson J (2016) Analyzing the uncertainty of estimating forest carbon stocks in China. Biogeosciences, 13, 3991-4004. |
[1] | Yihui Jiang, Yue Liu, Xu Zeng, Zheying Lin, Nan Wang, Jihao Peng, Ling Cao, Cong Zeng. Fish diversity and connectivity in six national marine protected areas in the East China Sea [J]. Biodiv Sci, 2024, 32(6): 24128-. |
[2] | Yu Tian, Junsheng Li. Analysis of the connotation and implementation path for the 30 by 30 target in the Kunming-Montreal Global Biodiversity Framework [J]. Biodiv Sci, 2024, 32(6): 24086-. |
[3] | Biyu Ma. Summary of amendments to India’s Biological Diversity Act and enlightenments for improving China’s legal system of biodiversity conservation [J]. Biodiv Sci, 2024, 32(5): 23412-. |
[4] | Yingli Cai, Hongge Zhu, Jiaxin Li. Biodiversity conservation in China: Policy evolution, main measures and development trends [J]. Biodiv Sci, 2024, 32(5): 23386-. |
[5] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[6] | Dekui Yan. Common elements, deficiencies, and optimization suggestions of biodiversity conservation policies in China [J]. Biodiv Sci, 2024, 32(5): 23293-. |
[7] | Fuwei Zhao, Yingshuo Li, Hui Chen. Reflections on biodiversity legislation in China’s new era [J]. Biodiv Sci, 2024, 32(5): 24027-. |
[8] | Jingzhou Liu, Yixin Qian, Yanxuedan Zhang, Feng Cui. Research progress and implications of flagship species paradigms based on latent Dirichlet allocation (LDA) model [J]. Biodiv Sci, 2024, 32(4): 23439-. |
[9] | Lejie Wu, Zekang Liu, Xing Tian, Qun Zhang, Bo Li, Jihua Wu. Effects of genotypic diversity on vegetative growth and reproductive strategies of Scirpus mariqueter population [J]. Biodiv Sci, 2024, 32(4): 23478-. |
[10] | Xuemeng Li, Jibao Jiang, Zenglu Zhang, Xiaojing Liu, Yali Wang, Yizhao Wu, Yinsheng Li, Jiangping Qiu, Qi Zhao. Earthworm biodiversity and its influencing factors in Baotianman National Nature Reserve [J]. Biodiv Sci, 2024, 32(4): 23352-. |
[11] | Cao Hao, Donghui Wu, Lingzi Mo, Guoliang Xu. A review on gut microbial diversity and function of overwintering animals [J]. Biodiv Sci, 2024, 32(3): 23407-. |
[12] | Haiou Liu, Leshan Du, Wenhui Liu, Ziyuan Li, Libo Pan, Lei Liu. Analysis and enlightenment on Global Biodiversity Framework Fund management policy [J]. Biodiv Sci, 2024, 32(3): 23334-. |
[13] | Jiaxin Wei, Zhiguo Jiang, Linsen Yang, Huanhuan Xiong, Jiaojiao Jin, Fanglin Luo, Jiehua Li, Hao Wu, Yaozhan Xu, Xiujuan Qiao, Xinzeng Wei, Hui Yao, Huiliang Yu, Jingyuan Yang, Mingxi Jiang. Community composition and structure in a 25 ha mid-subtropical mountain deciduous broad-leaved forest dynamics plot in Shennongjia, Hubei, China [J]. Biodiv Sci, 2024, 32(3): 23338-. |
[14] | He Zhirong, Wu Siyu, Shi Yingying, Wang Yuting, Jiang Yixin, Zhang Chunna, Zhao Na, Wang Supen. Current status and challenges on the effects of chytrid infection on amphibian populations [J]. Biodiv Sci, 2024, 32(2): 23274-. |
[15] | Peng Yunyue, Jin Tong, Zhang Xiaoquan. Biodiversity credits: Concepts, principles, transactions and challenges [J]. Biodiv Sci, 2024, 32(2): 23300-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn