生物多样性 ›› 2023, Vol. 31 ›› Issue (8): 23136. DOI: 10.17520/biods.2023136
罗正明1,2, 刘晋仙2, 张变华1, 周妍英3, 郝爱华1, 杨凯1, 柴宝峰2,*()
收稿日期:
2023-05-04
接受日期:
2023-06-29
出版日期:
2023-08-20
发布日期:
2023-07-05
通讯作者:
*E-mail: bfchai@sxu.edu.cn
基金资助:
Zhengming Luo1,2, Jinxian Liu2, Bianhua Zhang1, Yanying Zhou3, Aihua Hao1, Kai Yang1, Baofeng Chai2,*()
Received:
2023-05-04
Accepted:
2023-06-29
Online:
2023-08-20
Published:
2023-07-05
Contact:
*E-mail: bfchai@sxu.edu.cn
摘要:
原生生物在草地生态系统养分循环、微生物群落稳定和土壤肥力维持方面发挥着重要作用。为了揭示亚高山草甸退化过程中土壤原生生物群落组成和多样性变化格局及环境驱动机制, 本文利用18S rDNA高通量测序技术研究了五台山不同退化阶段(未退化(nondegraded, ND)、轻度(lightly degraded, LD)、中度(moderately degraded, MD)和重度退化(heavily degraded, HD))亚高山草甸土壤原生生物群落组成和多样性的变化特征。结果表明: 丝足门、褐藻门、纤毛门、叶足亚门、锥足亚门、绿藻门和顶复门是亚高山草甸土壤原生生物的优势门(相对丰度 > 1%)。纤毛门、叶足亚门、绿藻门、Choanoflagellida和Perkinsea的相对丰度在4种不同退化程度草甸中存在显著差异(P < 0.05)。LEfSe分析显示未退化草甸中主要富集了Perkinsea类群, 轻度退化草甸中富集了盾纤目类群, 中度退化草甸中富集了变形虫纲和卵菌纲类群, 中度退化草甸中主要富集了绿藻纲和硅藻纲类群等光合自养原生生物。随着亚高山草甸退化加剧, 土壤原生生物群落α多样性呈下降的趋势(P < 0.05)。总氮、植物Shannon-Wiener指数、地上生物量、土壤含水量和铵态氮是土壤原生生物群落结构变化的主要预测因子。方差分解分析(variance partitioning analysis, VPA)结果表明土壤理化因子和植被参数共同解释了原生生物群落结构变异的38.44%, 且土壤理化因子(20.69%)解释度大于植被参数(7.85%)。五台山亚高山草甸退化过程中土壤原生生物群落α多样性和结构均发生了明显的变化, 土壤环境因子是影响原生生物群落结构变化的重要因素。本研究结果加强了原生生物群落作为指示草地退化指标的潜力, 可为科学全面地评价亚高山草甸土壤生态系统健康状况提供数据支撑与参考。
罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰 (2023) 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素. 生物多样性, 31, 23136. DOI: 10.17520/biods.2023136.
Zhengming Luo, Jinxian Liu, Bianhua Zhang, Yanying Zhou, Aihua Hao, Kai Yang, Baofeng Chai (2023) Diversity characteristics and driving factors of soil protist communities in subalpine meadow at different degradation stages. Biodiversity Science, 31, 23136. DOI: 10.17520/biods.2023136.
图1 五台山采样位置和区域示意图。ND: 未退化草甸; LD: 轻度退化草甸; MD: 中度退化草甸; HD: 重度退化草甸。
Fig. 1 Sketch map of sampling location and area of Mount Wutai. ND, Nondegraded meadow; LD, Lightly degraded meadow; MD, Moderately degraded meadow; HD, Heavily degraded meadow.
图2 不同退化阶段亚高山草甸土壤原生生物优势门(a)和存在显著差异优势门(b)的相对丰度。ND: 未退化草甸; LD: 轻度退化草甸; MD: 中度退化草甸; HD: 重度退化草甸。P值表示不同退化阶段亚高山草甸间土壤原生生物门相对丰度的差异水平, *表示存在显著差异(P < 0.05)。
Fig. 2 Relative abundance of dominant (a) and significantly differentially dominant (b) phyla of soil protist in subalpine meadow at different degradation stages. ND, Nondegraded meadow; LD, Lightly degraded meadow; MD, Moderately degraded meadow; HD, Heavily degraded meadow. P value indicates the level of difference in relative abundance of soil protists among subalpine meadows at different stages of degradation, and * indicates a significant difference (P < 0.05).
图3 不同退化阶段亚高山草甸土壤原生生物群落差异的LEfSe分析。ND: 未退化草甸; LD: 轻度退化草甸; MD: 中度退化草甸; HD: 重度退化草甸。每个圆环为一个分类学层次内的所有分类群, 从内到外的圆环分别代表超群、门、纲、目和科; 圆环上的节点表示分类学层次上的一个分类单元, 每个节点的直径与丰度成正比; 不同退化程度草甸中相对丰度显著较高的分类单元(生物标志物)在进化分支图中进行了颜色编码。
Fig. 3 LEfSe analysis showing soil protist community differences in subalpine meadow at different degradation stages. ND, Nondegraded meadow; LD, Lightly degraded meadow; MD, Moderately degraded meadow; HD, Heavily degraded meadow. Each circular ring deposit all taxa within a taxonomic level, the circular ring from inside to outside represents supergroup, phylum, class, order and family, respectively. The node on the circular ring represents taxon, affiliating within the taxonomic level. The diameter of each node is proportional to the abundance of the group. Taxa that had significantly higher relative abundance in a certain treatment within each meadow degradation type were color-coded within the cladogram.
图4 不同退化阶段亚高山草甸土壤原生生物群落α多样性。ND: 未退化草甸; LD: 轻度退化草甸; MD: 中度退化草甸; HD: 重度退化草甸。各组间不相同的小写字母表示存在显著差异(P < 0.05)。
Fig. 4 The α diversity indices of soil protist communities in subalpine meadow at different degradation stages. ND, Nondegraded meadow; LD, Lightly degraded meadow; MD, Moderately degraded meadow; HD, Heavily degraded meadow. Data that do not share a lowercase letter are significantly different (P < 0.05).
图5 不同退化阶段亚高山草甸土壤原生生物群落非度量多维尺度分析(NMDS) (a)及相异性分析(基于Bray-Curtis距离) (b)。r = 0.577, P < 0.001为不同退化阶段亚高山草甸之间原生生物群落相似性的ANOSIM检验结果。ND: 未退化草甸; LD: 轻度退化草甸; MD: 中度退化草甸; HD: 重度退化草甸。
Fig. 5 Non-metric multidimensional scaling (NMDS) (a) and dissimilarity analysis (based on Bray-Curtis distance) (b) of soil protist communities in subalpine meadow at different degradation stages. The r = 0.577, P < 0.001 are the ANOSIM test results of protist community similarity between subalpine meadows in different degradation stages. ND, Nondegraded meadow; LD, Lightly degraded meadow; MD, Moderately degraded meadow; HD, Heavily degraded meadow.
图6 环境因子相关性及环境与土壤原生生物群落关系的Mantel分析。SWC: 土壤含水量; Clay: 粘粒含量; Silt: 粉粒含量; Sand: 砂粒; TN: 全氮; TC: 总碳; C/N: 碳氮比; SOM: 土壤有机质; NO3--N: 硝态氮; NO2--N: 亚硝态氮; NH4+-N: 铵态氮; AP: 有效磷; AK: 有效钾; Coverage: 植被盖度; Height: 植被高度; AGB: 地上生物量; Plant richness: 植物丰富度指数; Plant Shannon: 植物Shannon-Wiener指数。
Fig. 6 Correlation of environmental factors and Mantel analysis of relationship between environment and soil protist communities. SWC, Soil water content; Clay, Clay content; Silt, Silt content; Sand, Sand content; TN, Total nitrogen; TC, Total carbon; C/N, Carbon nitrogen ratio; SOM, Soil organic matter; NO3--N, Nitrate nitrogen; NO2--N, Nitrous nitrogen; NH4+-N, Ammonium nitrogen; AP, Available phosphorus; AK, Available potassium; Coverage, Vegetation coverage; Height, Vegetation height; AGB, Aboveground biomass; Plant richness: Plant richness index; Plant Shannon, Plant Shannon-Wiener index.
图7 土壤原生生物群落结构与环境变量的冗余分析(a)和方差分解分析(b)。TN: 总氮; Plant Shannon: 植物Shannon- Wiener指数; AGB: 地上生物量; SWC: 土壤含水量; NH4+-N: 铵态氮。ND: 未退化草甸; LD: 轻度退化草甸; MD: 中度退化草甸; HD: 重度退化草甸。
Fig. 7 Relationships between soil protist community structure and environmental variables based on redundancy analysis (a) and variation partitioning analysis (b). TN, Total nitrogen; Plant Shannon, Plant Shannon-Wiener index; AGB, Aboveground biomass; SWC, Soil water content; NH4+-N, Ammonium nitrogen. ND, Nondegraded meadow; LD, Lightly degraded meadow; MD, Moderately degraded meadow; HD, Heavily degraded meadow.
[1] |
Acosta-Mercado D, Lynn DH (2004) Soil ciliate species richness and abundance associated with the rhizosphere of different subtropical plant species. The Journal of Eukaryotic Microbiology, 51, 582-588.
DOI URL |
[2] |
Acosta-Mercado D, Lynn DH (2006) Contrasting soil ciliate species richness and abundance between two tropical plant species: A test of the plant effect. Microbial Ecology, 51, 453-459.
DOI PMID |
[3] | Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, Hou XY, Zhou HK, Ma L, Ren WB, Li XL, Ding Y, Li YH, Shi HX (2021) Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735. |
[4] |
Carlson ML, Flagstad LA, Gillet F, Mitchell EAD (2010) Community development along a proglacial chronosequence: Are above-ground and below-ground community structure controlled more by biotic than abiotic factors? Journal of Ecology, 98, 1084-1095.
DOI URL |
[5] |
Chambouvet A, Berney C, Romac S, Audic S, Maguire F, De Vargas C, Richards TA (2014) Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments. BMC Microbiology, 14, 110.
DOI PMID |
[6] |
Che RX, Wang YF, Li KX, Xu ZH, Hu JM, Wang F, Rui YC, Li LF, Pang Z, Cui XY (2019) Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil and Tillage Research, 195, 104426.
DOI URL |
[7] |
Clarholm M (2002) Bacteria and protozoa as integral components of the forest ecosystem—Their role in creating a naturally varied soil fertility. Antonie Van Leeuwenhoek, 81, 309-318.
DOI URL |
[8] | Coban O, De Deyn GB, van der Ploeg M, (2022) Soil microbiota as game-changers in restoration of degraded lands. Science, 375, abe0725. |
[9] | Dassen S, Cortois R, Martens H, de Hollander M, Kowalchuk GA, van der Putten WH, De Deyn GB, (2017) Differential responses of soil bacteria, fungi, Archaea and protists to plant species richness and plant functional group identity. Molecular Ecology, 26, 4085-4098. |
[10] |
Ezawa T, Saito K (2018) How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytologist, 220, 1116-1121.
DOI PMID |
[11] |
Gao ZL, Karlsson I, Geisen S, Kowalchuk G, Jousset A (2019) Protists: Puppet masters of the rhizosphere microbiome. Trends in Plant Science, 24, 165-176.
DOI PMID |
[12] |
Geisen S, Bandow C, Roembke J, Bonkowski M (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia, 57, 205-213.
DOI URL |
[13] |
Geisen S, Bonkowski M (2018) Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Applied Soil Ecology, 123, 328-333.
DOI URL |
[14] |
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 293-323.
DOI PMID |
[15] | Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2013) The Protist Ribosomal Reference database ( PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research, 41, D597-D604. |
[16] |
Hu ZK, Yao JN, Chen XY, Gong X, Zhang Y, Zhou XH, Guo H, Liu MQ (2022) Precipitation changes, warming, and N input differentially affect microbial predators in an alpine meadow: Evidence from soil phagotrophic protists. Soil Biology and Biochemistry, 165, 108521.
DOI URL |
[17] |
Itoïz S, Metz S, Derelle E, Reñé A, Garcés E, Bass D, Soudant P, Chambouvet A (2022) Emerging parasitic protists: The case of Perkinsea. Frontiers in Microbiology, 12, 735815.
DOI URL |
[18] |
Jassey VEJ, Signarbieux C, Hättenschwiler S, Bragazza L, Buttler A, Delarue F, Fournier B, Gilbert D, Laggoun-Défarge F, Lara E, Mills RTE, Mitchell EAD, Payne RJ, Robroek BJM (2015) An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Scientific Reports, 5, 16931.
DOI PMID |
[19] |
Jeon BS, Park MG (2021) A novel parasitoid of marine dinoflagellates, Pararosarium dinoexitiosum gen. et sp. nov. (Perkinsozoa, Alveolata), showing characteristic beaded sporocytes. Frontiers in Microbiology, 12, 748092.
DOI URL |
[20] |
Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D, Marhan S, Urich T, Wubet T, Bonkowski M, Buscot F, Lueders T, Kandeler E (2016) Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Frontiers in Microbiology, 7, 1524.
PMID |
[21] |
Krashevska V, Sandmann D, Maraun M, Scheu S (2014) Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. The ISME Journal, 8, 1126-1134.
DOI |
[22] |
Lai CM, Li CY, Peng F, Xue X, You QG, Zhang WJ, Ma SX (2021) Plant community change mediated heterotrophic respiration increase explains soil organic carbon loss before moderate degradation of alpine meadow. Land Degradation & Development, 32, 5322-5333.
DOI URL |
[23] |
Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40, 2407-2415.
DOI URL |
[24] |
Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XN, Zhou Y (2016) Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222.
DOI URL |
[25] | Lin B, Zhao XR, Zheng Y, Qi S, Liu XZ (2017) Effect of grazing intensity on protozoan community, microbial biomass, and enzyme activity in an alpine meadow on the Tibetan Plateau. Journal of Soil & Sediments, 17, 2752-2762. |
[26] |
Liu KF, Li T, Duan XW, Zhang S, Chen MP, Hou HY, Wang ZL, Yu AL, Chen DH, Zhang XL, Hu JM, Dong YF, Liu D, Che RX (2023) The degradation of subalpine meadows significantly changed the soil microbiome. Agriculture, Ecosystems & Environment, 349, 108470.
DOI URL |
[27] | Luo ZM, He L, Liu JX, Hu YQ, Zhou YY, Zheng QR, Chai BF (2022) Responses of soil fungal communities to subalpine meadow degradation in Mount Wutai. Environmental Science, 43, 3328-3337. (in Chinese with English abstract) |
[ 罗正明, 赫磊, 刘晋仙, 胡砚秋, 周妍英, 郑庆荣, 柴宝峰 (2022) 土壤真菌群落对五台山亚高山草甸退化的响应. 环境科学, 43, 3328-3337.] | |
[28] |
Luo ZM, Liu JX, He L, Du JQ, Wang LX, Jia T, Chai BF, Wu TH (2022) Degradation-induced microbiome alterations may aggravate soil nutrient loss in subalpine meadows. Land Degradation & Development, 33, 2699-2712.
DOI URL |
[29] | Luo ZM, Liu JX, Jia T, Chai BF, Wu TH (2020) Soil bacterial community response and nitrogen cycling variations associated with subalpine meadow degradation on the Loess Plateau, China. Applied and Environmental Microbiology, 86, e00180-20. |
[30] | Luo ZM, Liu JX, Zhou YY, Du JQ, Wu Q, Chai BF (2021) Community structures and diversity patterns of the soil protist communities along an altitudinal gradient in a subalpine grassland. Acta Ecologica Sinica, 41, 2783-2793. (in Chinese with English abstract) |
[ 罗正明, 刘晋仙, 周妍英, 杜京旗, 吴强, 柴宝峰 (2021) 亚高山草地土壤原生生物群落结构和多样性海拔分布格局. 生态学报, 41, 2783-2793.] | |
[31] | Ning YZ, Yang YQ, Dong WH, Zhang HR, Ma JY (2018) Response of soil ciliate community to ecological restoration of different return patterns. Acta Ecologica Sinica, 38, 3628-3638. (in Chinese with English abstract) |
[ 宁应之, 杨永强, 董玟含, 张惠茹, 马继阳 (2018) 土壤纤毛虫群落对不同退还模式生态恢复的响应. 生态学报, 38, 3628-3638.] | |
[32] | Si SC, Wu YC, Li Y, Tu C, Fu CC, Luo YM (2022) The current research progress and prospects of cultivated and grassland soil health. Acta Pedologica Sinica, 59, 625-642. (in Chinese with English abstract) |
[ 司绍诚, 吴宇澄, 李远, 涂晨, 付传城, 骆永明 (2022) 耕地和草地土壤健康研究进展与展望. 土壤学报, 59, 625-642.] | |
[33] |
Singer D, Seppey CVW, Lentendu G, Dunthorn M, Bass D, Belbahri L, Blandenier Q, Debroas D, de Groot GA, de Vargas C, Domaizon I, Duckert C, Izaguirre I, Koenig I, Mataloni G, Schiaffino MR, Mitchell EAD, Geisen S, Lara E (2021) Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environment International, 146, 106262.
DOI URL |
[34] |
Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19, 21-31.
DOI URL |
[35] |
Sun AQ, Jiao XY, Chen QL, Trivedi P, Li ZX, Li FF, Zheng Y, Lin YX, Hu HW, He JZ (2021) Fertilization alters protistan consumers and parasites in crop-associated microbiomes. Environmental Microbiology, 23, 2169-2183.
DOI PMID |
[36] |
Wang CT, Long RJ, Wang QL, Jing ZC, Shi JJ (2009) Changes in plant diversity, biomass and soil C, in alpine meadows at different degradation stages in the headwater region of three rivers, China. Land Degradation & Development, 20, 187-198.
DOI URL |
[37] |
Wu LW, Zhang Y, Guo X, Ning DL, Zhou XS, Feng JJ, Yuan MM, Liu S, Guo JJ, Gao ZP, Ma J, Kuang JL, Jian SY, Han S, Yang ZF, Ouyang Y, Fu Y, Xiao NJ, Liu XD, Wu LY, Zhou AF, Yang YF, Tiedje JM, Zhou JZ (2022) Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology, 7, 1054-1062.
DOI PMID |
[38] |
Wu WX, Lu HP, Sastri A, Yeh YC, Gong GC, Chou WC, Hsieh CH (2018) Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. The ISME Journal, 12, 485-494.
DOI URL |
[39] |
Xiong W, Jousset A, Guo S, Karlsson I, Zhao QY, Wu HS, Kowalchuk GA, Shen QR, Li R, Geisen S (2018) Soil protist communities form a dynamic hub in the soil microbiome. The ISME Journal, 12, 634-638.
DOI URL |
[40] |
Xiong W, Song YQ, Yang KM, Gu YA, Wei Z, Kowalchuk GA, Xu YC, Jousset A, Shen QR, Geisen S (2020) Rhizosphere protists are key determinants of plant health. Microbiome, 8, 27.
DOI PMID |
[41] |
Xun WB, Yan RR, Ren Y, Jin DY, Xiong W, Zhang GS, Cui ZL, Xin XP, Zhang RF (2018) Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome, 6, 170.
DOI PMID |
[42] |
Zhang Q, Men X, Hui C, Ge F, Ouyang F (2022) Wheat yield losses from pests and pathogens in China. Agriculture, Ecosystems & Environment, 326, 107821.
DOI URL |
[43] |
Zhang SY, Zhang HF, Liu HM, Wang H, Xiu WM, Li G, Zhang GL, Zhou ZK, Jiang N, Zhang H, Zhao JN, Yang DL (2022) Fertilization drives distinct biotic and abiotic factors in regulating functional groups of protists in a 5-year fertilization system. Frontiers in Microbiology, 13, 1036362.
DOI URL |
[44] |
Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, Wei WX, Fang YT, Li PP, Zhang LM (2019) Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 7, 33.
DOI |
[1] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[2] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[3] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[4] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[5] | 夏凡, 杨婧, 李建, 史洋, 盖立新, 黄文华, 张经纬, 杨南, 高福利, 韩莹莹, 鲍伟东. 北京地区四个豹猫亚种群肠道菌群的组成[J]. 生物多样性, 2022, 30(9): 22103-. |
[6] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[7] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[8] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[9] | 夏呈强, 李毅, 党延茹, 察倩倩, 贺晓艳, 秦启龙. 中印度洋与南海西部表层海水细菌多样性[J]. 生物多样性, 2022, 30(1): 21407-. |
[10] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[11] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[12] | 李婷婷, 张西美. 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展[J]. 生物多样性, 2020, 28(6): 749-758. |
[13] | 靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. |
[14] | 韩本凤, 周欣, 张雪. 基因组学技术在病毒鉴定与宿主溯源中的应用[J]. 生物多样性, 2020, 28(5): 587-595. |
[15] | 张全建, 杨彪, 付强, 王磊, 龚旭, 张远彬. 邛崃山系水鹿的冬季食性[J]. 生物多样性, 2020, 28(10): 1192-1201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn