生物多样性 ›› 2013, Vol. 21 ›› Issue (3): 278-287. DOI: 10.3724/SP.J.1003.2013.10012
卜文圣1, 臧润国1,*(), 丁易1, 张俊艳1, 阮云泽2
收稿日期:
2013-01-09
接受日期:
2013-04-03
出版日期:
2013-05-20
发布日期:
2013-06-05
通讯作者:
臧润国
基金资助:
Wensheng Bu1, Runguo Zang1,*(), Yi Ding1, Junyan Zhang1, Yunze Ruan2
Received:
2013-01-09
Accepted:
2013-04-03
Online:
2013-05-20
Published:
2013-06-05
Contact:
Zang Runguo
摘要:
以功能性状为基础的方法可以用来探讨植物群落中功能性状如何响应环境并揭示植物生态策略的潜在驱动力, 但有关功能性状与环境因子之间的关系随植物群落演替变化的研究仍然匮乏。作者以海南岛热带低地雨林刀耕火种弃耕后处于不同演替阶段的次生林(包括弃耕后恢复15年、30年及60年的次生林)和老龄林为对象, 通过群落学调查和对木本植物的功能性状及样地环境因子的测定, 分析了群落水平植物功能性状与环境因子关系随演替阶段的变化规律。结果表明, 随着演替的进行, 林冠开阔度、土壤养分、比叶面积、叶片氮含量、叶片磷含量和叶片总有机碳含量逐渐降低, 叶片干物质含量、木材密度、潜在最大高度逐渐升高, 而土壤水分和叶片钾含量变化不大。多元逐步回归分析表明, 影响群落水平植物功能性状的主要环境因子随演替阶段而发生显著的变化, 在15年、30年和60年的次生林及老龄林中, 对群落水平植物功能性状影响最大的环境因子依次为土壤有机质和pH值、林冠开阔度和土壤总磷含量、土壤总钾和有效磷含量, 以及土壤有机质含量和磷含量。同一功能性状在不同演替阶段受到不同环境因子的控制, 同时各功能性状又能够对不同演替阶段所处的特殊环境产生一定的适应性。
卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 (2013) 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 21, 278-287. DOI: 10.3724/SP.J.1003.2013.10012.
Wensheng Bu,Runguo Zang,Yi Ding,Junyan Zhang,Yunze Ruan (2013) Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China. Biodiversity Science, 21, 278-287. DOI: 10.3724/SP.J.1003.2013.10012.
演替阶段 | 海拔 | 凹凸度 | 坡度 | 干扰类型 |
---|---|---|---|---|
Stages | Elevation | Convex | Slope | Disturbance type |
15年次生林 15-year-old secondary forest | 419-520(467) | -7到7(0) | 5-27.3(14.1) | 刀耕火种 Shifting cultivation |
30年次生林 30-year-old secondary forest | 514-576(545) | -10到12(0.2) | 9-38.6(23.5) | 刀耕火种 Shifting cultivation |
60年次生林 60-year-old secondary forest | 474-515(498) | -14到9(-0.1) | 8-39.2(19.4) | 刀耕火种 Shifting cultivation |
老龄林 Old-growth forest (OG) | 550-650(598) | -18到14(-1) | 7-39.5(27.0) | 未干扰 No disturbance |
表1 海南岛热带低地雨林各演替阶段的样地基本信息(括号内的数值为均值)
Table 1 Basic information of tropical lowland rainforest plots at different successional stages in the Bawangling Nature Reserve (the number is the mean of value in the brackets)
演替阶段 | 海拔 | 凹凸度 | 坡度 | 干扰类型 |
---|---|---|---|---|
Stages | Elevation | Convex | Slope | Disturbance type |
15年次生林 15-year-old secondary forest | 419-520(467) | -7到7(0) | 5-27.3(14.1) | 刀耕火种 Shifting cultivation |
30年次生林 30-year-old secondary forest | 514-576(545) | -10到12(0.2) | 9-38.6(23.5) | 刀耕火种 Shifting cultivation |
60年次生林 60-year-old secondary forest | 474-515(498) | -14到9(-0.1) | 8-39.2(19.4) | 刀耕火种 Shifting cultivation |
老龄林 Old-growth forest (OG) | 550-650(598) | -18到14(-1) | 7-39.5(27.0) | 未干扰 No disturbance |
图1 海南岛霸王岭不同演替阶段低地雨林环境因子的变异。不同的字母表示差异显著(P<0.05)。
Fig.1 Variations of environmental factors during different successional stages of tropical lowland rainforest in Bawangling Nature Reserve, Hainan Island. CO, Canopy openness; WC, Water content; BD, Bulk density; pH, pH value; SOM, Soil organic matter; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Available nitrogen; AP, Available phosphorus and AK, Available potassium. Abbreviations of other parameters are same as Table 1. Boxes with different letters differ significantly at P <0.05.
图2 海南岛霸王岭不同演替阶段低地雨林植物功能性状的变异。不同的字母表示差异显著(P<0.05)。
Fig. 2 Variations of plant functional traits during different successional stages of tropical lowland rainforest in Bawangling Nature Reserve, Hainan Island. SLA, Specific leaf area; LDMC, Leaf dry matter content; WD, Wood density; Hmax, Potential maximum height; LNC, Leaf nitrogen content; LPC, Leaf phosphorus content; LKC, Leaf potassium content; LCC, Leaf total organic carbon. Abbreviations of other parameters are same as Table 1. Boxes with different letters differ significantly at P < 0.05.
阶段 | 性状 | 环境变量 Environmental variables | 回归方程参数 Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage | Trait | CO | BD | pH | SOM | TP | TK | AN | AP | R2 | AIC | P | |
15年次生林 15-year-old secondary forest (15yr) | |||||||||||||
SLA | 0.47 | 0.12 | 154.6 | 0.0145 | |||||||||
LDMC | |||||||||||||
WD | 0.18 | 0.17 | 37.5 | 0.0029 | |||||||||
Hmax | |||||||||||||
LNC | 0.30 | 0.15 | 97.4 | 0.0064 | |||||||||
LPC | |||||||||||||
LKC | 0.38 | -0.20 | 0.27 | 101.2 | 0.0005 | ||||||||
LCC | -0.41 | 0.21 | 107.2 | 0.0009 | |||||||||
30年次生林 30-year-old secondary forest (30yr) | |||||||||||||
SLA | -0.63 | 0.45 | 0.34 | 138.9 | <0.0001 | ||||||||
LDMC | -0.30 | 0.15 | 87.1 | 0.005 | |||||||||
WD | -0.32 | 0.15 | 56.3 | 0.0057 | |||||||||
Hmax | 0.67 | -0.30 | 0.35 | 117.6 | <0.0001 | ||||||||
LNC | 0.35 | 0.28 | 0.16 | 104.2 | 0.0154 | ||||||||
LPC | 0.75 | -0.19 | 0.22 | 0.41 | 106.3 | <0.0001 | |||||||
LKC | -0.90 | 0.33 | 0.39 | 142.0 | <0.0001 | ||||||||
LCC | 0.74 | -0.40 | 0.39 | 127.4 | <0.0001 | ||||||||
60年次生林 60-year-old secondary forest (60yr) | |||||||||||||
SLA | 0.71 | 0.60 | 92.5 | <0.0001 | |||||||||
LDMC | -0.53 | -0.40 | 0.65 | 91.5 | <0.0001 | ||||||||
WD | -0.28 | -0.40 | 0.62 | 52.2 | <0.0001 | ||||||||
Hmax | -0.48 | -0.60 | 0.56 | 117.2 | <0.0001 | ||||||||
LNC | 0.37 | 0.48 | 0.67 | 72.1 | <0.0001 | ||||||||
LPC | 0.11 | 0.19 | 0.63 | -26.3 | <0.0001 | ||||||||
LKC | -0.29 | 0.70 | 0.37 | 125.9 | <0.0001 | ||||||||
LCC | -0.13 | 0.37 | 0.49 | 54.7 | <0.0001 | ||||||||
老龄林 Old-growth forest (OG) | |||||||||||||
SLA | -0.28 | 0.29 | 0.41 | 59.0 | <0.0001 | ||||||||
LDMC | -0.23 | 0.32 | 0.21 | 80.6 | 0.035 | ||||||||
WD | -0.26 | -0.44 | 0.32 | 52.0 | 0.0001 | ||||||||
Hmax | 0.59 | 0.14 | 90.8 | 0.0079 | |||||||||
LNC | -0.72 | 0.18 | 140.7 | 0.0022 | |||||||||
LPC | -0.24 | 0.21 | 19.8 | 0.0008 | |||||||||
LKC | 0.68 | 0.17 | 137.6 | 0.0029 | |||||||||
LCC | 0.47 | 0.62 | 0.31 | 100.5 | 0.0002 |
表2 不同演替阶段功能性状和环境因子的多元逐步回归结果(环境变量的数值为通径系数, R2为决定系数, AIC为赤池信息准则, 其余简写变量的含义同图1和图2)。
Table 2 Multiple regression analysis between abundance-weighted mean value and environmental variables in different successional stages. The values of environmental variables are path coefficients (standardized regression coefficient) in regression model. R2 indicates coefficient of determination. AIC indicates Alkaike’s information criterion. Abbreviations of other variables are the same as Fig.1 and Fig. 2.
阶段 | 性状 | 环境变量 Environmental variables | 回归方程参数 Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage | Trait | CO | BD | pH | SOM | TP | TK | AN | AP | R2 | AIC | P | |
15年次生林 15-year-old secondary forest (15yr) | |||||||||||||
SLA | 0.47 | 0.12 | 154.6 | 0.0145 | |||||||||
LDMC | |||||||||||||
WD | 0.18 | 0.17 | 37.5 | 0.0029 | |||||||||
Hmax | |||||||||||||
LNC | 0.30 | 0.15 | 97.4 | 0.0064 | |||||||||
LPC | |||||||||||||
LKC | 0.38 | -0.20 | 0.27 | 101.2 | 0.0005 | ||||||||
LCC | -0.41 | 0.21 | 107.2 | 0.0009 | |||||||||
30年次生林 30-year-old secondary forest (30yr) | |||||||||||||
SLA | -0.63 | 0.45 | 0.34 | 138.9 | <0.0001 | ||||||||
LDMC | -0.30 | 0.15 | 87.1 | 0.005 | |||||||||
WD | -0.32 | 0.15 | 56.3 | 0.0057 | |||||||||
Hmax | 0.67 | -0.30 | 0.35 | 117.6 | <0.0001 | ||||||||
LNC | 0.35 | 0.28 | 0.16 | 104.2 | 0.0154 | ||||||||
LPC | 0.75 | -0.19 | 0.22 | 0.41 | 106.3 | <0.0001 | |||||||
LKC | -0.90 | 0.33 | 0.39 | 142.0 | <0.0001 | ||||||||
LCC | 0.74 | -0.40 | 0.39 | 127.4 | <0.0001 | ||||||||
60年次生林 60-year-old secondary forest (60yr) | |||||||||||||
SLA | 0.71 | 0.60 | 92.5 | <0.0001 | |||||||||
LDMC | -0.53 | -0.40 | 0.65 | 91.5 | <0.0001 | ||||||||
WD | -0.28 | -0.40 | 0.62 | 52.2 | <0.0001 | ||||||||
Hmax | -0.48 | -0.60 | 0.56 | 117.2 | <0.0001 | ||||||||
LNC | 0.37 | 0.48 | 0.67 | 72.1 | <0.0001 | ||||||||
LPC | 0.11 | 0.19 | 0.63 | -26.3 | <0.0001 | ||||||||
LKC | -0.29 | 0.70 | 0.37 | 125.9 | <0.0001 | ||||||||
LCC | -0.13 | 0.37 | 0.49 | 54.7 | <0.0001 | ||||||||
老龄林 Old-growth forest (OG) | |||||||||||||
SLA | -0.28 | 0.29 | 0.41 | 59.0 | <0.0001 | ||||||||
LDMC | -0.23 | 0.32 | 0.21 | 80.6 | 0.035 | ||||||||
WD | -0.26 | -0.44 | 0.32 | 52.0 | 0.0001 | ||||||||
Hmax | 0.59 | 0.14 | 90.8 | 0.0079 | |||||||||
LNC | -0.72 | 0.18 | 140.7 | 0.0022 | |||||||||
LPC | -0.24 | 0.21 | 19.8 | 0.0008 | |||||||||
LKC | 0.68 | 0.17 | 137.6 | 0.0029 | |||||||||
LCC | 0.47 | 0.62 | 0.31 | 100.5 | 0.0002 |
1 | Aerts R, Chapin III FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67. |
2 | Baribault TW, Kobe RK, Finley AO (2012) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes.Ecological Monographs, 82, 189-203. |
3 | Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances.Perspectives in Plant Ecology, Evolution and Systematics, 6, 51-71. |
4 | Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.Ecology Letters, 14, 939-947. |
5 | Coomes OT, Takasaki Y, Rhemtulla JM (2011) Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover.Proceedings of the National Academy of Sciences,USA, 108, 13925-13930. |
6 | Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380. |
7 | Dalle SP, Pulido MT, de Blois S (2011) Balancing shifting cultivation and forest conservation: lessons from a “sustainable landscape” in southeastern Mexico.Ecological Applications, 21, 1557-1572. |
8 | Dalling JW, Hubbell SP (2002) Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species.Journal of Ecology, 90, 557-568. |
9 | De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes.Ecology Letters, 11, 516-531. |
10 | Ding J (丁佳), Wu Q (吴茜), Yan H (闫慧), Zhang SR (张守仁) (2011) Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest.Biodiversity Science(生物多样性), 19, 158-167. (in Chinese with English abstract) |
11 | Ding Y (丁易), Zang RG (臧润国) (2011) Vegetation recovery dynamics of tropical lowland rain forest in Bawangling of Hainan Island, South China.Chinese Journal of Plant Ecology(植物生态学报), 35, 577-586. (in Chinese with English abstract) |
12 | Ding Y, Zang R, Liu S, He F, Letcher SG (2012) Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation.Biological Conservation, 145, 225-233. |
13 | Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau JP, Thébault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe.Ecology, 90, 598-611. |
14 | Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession.Ecology, 85, 2630-2637. |
15 | Huston M, Smith T (1987) Plant succession: life history and competition.The American Naturalist, 130, 168-198. |
16 | Jiang GM (蒋高明) (1995) The impact of global increasing of CO2 on plants.Chinese Bulletin of Botany(植物学通报), 12(4), 1-7. (in Chinese) |
17 | Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology.Journal of Vegetation Science, 3, 157-164. |
18 | Laliberté E, Shipley B, Norton DA, Scott D (2012) Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity? Journal of Ecology, 100, 662-677. |
19 | Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martínez-Ramos M, Bongers F (2012) Functional diversity changes during tropical forest succession.Perspectives in Plant Ecology, Evolution and Systematics, 14, 89-96. |
20 | Long W, Zang R, Ding Y (2011) Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests.Flora: Morphology, Distribution, Functional Ecology of Plants, 206, 896-903. |
21 | Meier CL, Bowman WD (2010) Chemical composition and diversity influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling: implications for plant species loss.Soil Biology and Biochemistry, 42, 1447-1454. |
22 | Nishimua T, Suzuki E, Kohyama T, Tsuyuzaki S (2007) Mortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought.Plant Ecology, 188, 165-177. |
23 | Ordoñez JC, van Bodegom PM, Witte JM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149. |
24 | Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland.Journal of Ecology, 98, 1074-1083. |
25 | R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. |
26 | Raevel V, Violle C, Munoz F (2012) Mechanisms of ecological succession: insights from plant functional strategies.Oikos, 121, 1761-1770. |
27 | Read L, Lawrence D (2003) Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects.Ecosystems, 6, 747-761. |
28 | Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices.Ecological Monographs, 80, 469-484. |
29 | Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property.Nature, 478, 49-56. |
30 | Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L (2008) Scaling environmental change through the community-level: a trait-based response-and-effect frame- work for plants.Global Change Biology, 14, 1125-1140. |
31 | Tahmasebi Kohyani P, Bossuyt B, Bonte D, Hoffmann M (2008) Importance of grazing and soil acidity for plant community composition and trait characterisation in coastal dune grasslands.Applied Vegetation Science, 11, 179-186. |
32 | Tilman D (1988) Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton. |
33 | Tripler CE, Kaushal SS, Likens GE, Todd Walter M (2006) Patterns in potassium dynamics in forest ecosystems.Ecology Letters, 9, 451-466. |
34 | Vile D, Shipley B, Garnier E (2006) A structural equation model to integrate changes in functional strategies during old-field succession.Ecology, 87, 504-517. |
35 | Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional indices for a multifaceted framework in functional ecology.Ecology, 89, 2290-2301. |
36 | Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional!Oikos, 116, 882-892. |
37 | Walker LR, Del Moral R (2003) Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, London. |
38 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. |
39 | Whitmore T, Burslem D, Newbery D, Prins H, Brown N. (1998) Major Disturbances in Tropical Rainforests. Blackwell Science Ltd, Oxford. |
40 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Pooter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum.Nature, 428, 821-827. |
41 | Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest.Ecology, 92, 1616-1625. |
42 | Yao TT (尧婷婷), Meng TT (孟婷婷), Ni J (倪健), Yan S (阎顺), Feng XH (冯晓华), Wang GH (王国宏) (2010) Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China.Biodiversity Science(生物多样性), 18, 188-197. (in Chinese with English abstract) |
43 | Zang RG (臧润国), Ding Y (丁易), Zhang ZD (张志东), Deng FY (邓福英), Mao PL (毛培利) (2010) Ecological Basis of Conservation and Restoration for the Major Functional Groups in Tropical Natural Forests on Hainan Island (海南岛热带天然林主要功能群保护与恢复的生态学基础). Science Press, Beijing. (in Chinese) |
44 | Zhang WR (张万儒), Yang GC (杨光澄), Tu XN (屠星南) (1999) The Forestry Industry Standard of the People’s Republic of China: Determination of Forest Soil (中国林业行业标准: 森林土壤测定方法). China Standard Press, Beijing. (in Chinese) |
[1] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[2] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[3] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[4] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[5] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[6] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
[7] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[8] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[9] | 吴墨栩, 安明态, 田力, 刘锋. 茂兰喀斯特森林木本植物性系统数量特征及其与环境因子的关系[J]. 生物多样性, 2022, 30(11): 22025-. |
[10] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[11] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[12] | 张剑坛, 李艳朋, 张入匀, 倪云龙, 周文莹, 练琚愉, 叶万辉. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(4): 456-466. |
[13] | 王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜. 微生境对黄梅秤锤树野生种群叶片功能性状的影响[J]. 生物多样性, 2020, 28(3): 277-288. |
[14] | 蒋日进,张琳琳,徐开达,李鹏飞,肖祎,樊紫薇. 浙江中南部近岸海域游泳动物功能群特征与多样性[J]. 生物多样性, 2019, 27(12): 1330-1338. |
[15] | 吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545-553. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn