生物多样性 ›› 2025, Vol. 33 ›› Issue (12): 25283.  DOI: 10.17520/biods.2025283  cstr: 32101.14.biods.2025283

• 技术与方法 • 上一篇    下一篇

融合对抗解耦与特征对齐的野生动物图像开集域适应方法

安家宁1,2,3, 张长春1,2,3, 王建涛5, 裴志永6, 白丹丹7, 张军国1,2,4*   

  1. 1. 北京林业大学工学院, 北京 100083; 2. 林木资源高效生产全国重点实验室, 北京 100083; 3. 北京林业大学生物多样性智慧监测研究中心, 北京 100083; 4. 陕西省动物研究所, 西安 710032; 5. 内蒙古乌兰坝国家级自然保护区管理局, 内蒙古赤峰 025450; 6. 内蒙古农业大学能源与交通工程学院, 呼和浩特 010018; 7. 兴安盟乌兰河地方级自然保护区管理局, 内蒙古乌兰浩特 137400
  • 收稿日期:2025-07-20 修回日期:2025-08-17 接受日期:2026-01-06 出版日期:2025-12-20 发布日期:2026-01-09
  • 通讯作者: 张军国
  • 基金资助:
    开放环境野生动物监测图像增量学习识别机制及方法研究(32371874); 北京地区开放环境野生动物监测图像泛化识别机制及方法研究(6244053); 湿地水鸟监测图像开放集域适应识别机制及方法(32401569); 高层次人才引智计划-张军国(2025K-32)

An open-set domain adaptation method for wildlife image recognition via adversarial disentanglement and feature alignment

Jianing An1,2,3, Changchun Zhang1,2,3, Jiantao Wang5, Zhiyong Pei6, Dandan Bai7, Junguo Zhang1,2,4*   

  1. 1 School of Technology, Beijing Forestry University, Beijing 100083, China 

    2 State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China 

    3 Research Center for Biodiversity Intelligent Monitoring, Beijing Forestry University, Beijing 100083, China 

    4 Shaanxi Institute of Zoology, Xi’an 710032, China 

    5 Ulaanba National Nature Reserve Administration, Inner Mongolia, Chifeng, Inner Mongolia 025450, China 

    6 School of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China 

    7 Wulan River Local Nature Reserve Administration, Xing’an League, Ulan Hot, Inner Mongolia 137400, China

  • Received:2025-07-20 Revised:2025-08-17 Accepted:2026-01-06 Online:2025-12-20 Published:2026-01-09
  • Contact: Junguo Zhang

摘要: 野生动物是生态系统的重要组成部分, 高效的图像识别与监测对其保护具有重要意义。在野生动物图像识别的实际应用中, 由于环境背景复杂所引发的跨域分布差异, 以及目标域中未知物种的干扰, 常常导致模型泛化性能的降低。针对上述挑战, 本文提出一种融合对抗解耦与特征对齐的野生动物图像开集域适应方法。首先, 基于残差网络ResNet50构建域对抗网络, 再采用融合中心对齐与正交投影的双重优化策略, 通过增强已知类别的判别性进一步解耦未知类别的特征空间, 最后构建融合对抗解耦与特征对齐的野生动物开集域适应识别模型。实验结果表明, 所提出的方法在包含8类与11类野生动物的域适应数据集上进行训练与评估, 分别获得了48.95%和46.38%的Average-HOS值, 与最佳对比方法相比, Average-HOS值分别提升了14.73%和9.53%。与基线模型相比, 所提方法在开集域适应任务中展现出显著的性能优势。本文提出的融合对抗解耦与特征对齐的协同优化方法, 能有效解决野生动物识别任务中域偏移与未知类别干扰难题, 进而提升模型在开放场景下的跨域泛化及未知类别识别能力。

关键词: 野生动物, 图像识别, 开集域适应, 正交投影损失, 中心对齐损失

Abstract

Aim: Wildlife is a vital component of biodiversity, and its efficient monitoring through image recognition is crucial for conservation. However, the performance of wildlife image recognition models often declines due to cross-domain distribution shifts from complex environments and interference from unknown species in the target domain. 

Methods: To address these challenges, we propose an open-set domain adaptation method for wildlife images that integrates adversarial disentanglement and feature alignment. We first constructed a domain adversarial network using the ResNet50 residual network. Next, a dual optimization strategy combining center alignment and orthogonal projection was employed to enhance the discriminative power for known categories and disentangle the feature space of unknown categories. The final open-set domain adaptation recognition model was developed by integrating these components. 

Results: When trained and evaluated on datasets with 8 and 11 wildlife species, our method achieved Average-HOS values of 48.95% and 46.38%, respectively. This represents a significant performance improvement of 14.73% and 9.53% in Average-HOS compared to the best baseline methods. 

Conclusion: The collaborative optimization approach effectively addresses domain shift and unknown category interference, thereby enhancing the model’s cross-domain generalization and unknown category identification capabilities in real-world scenarios.

Key words: wildlife, image recognition, open-set domain adaptation, orthogonal projection loss, center loss