生物多样性 ›› 2025, Vol. 33 ›› Issue (5): 24373. DOI: 10.17520/biods.2024373 cstr: 32101.14.biods.2024373
所属专题: 昆蒙框架目标12下的中国城市生物多样性研究专辑
• 研究报告 • 下一篇
曾子轩1,2(), 杨锐1,2,*(
)(
), 黄越3(
), 陈路遥1,2
收稿日期:
2024-08-18
接受日期:
2024-12-15
出版日期:
2025-05-20
发布日期:
2025-03-31
通讯作者:
杨锐
基金资助:
Tz-Hsuan Tseng1,2(), Rui Yang1,2,*(
)(
), Yue Huang3(
), Luyao Chen1,2
Received:
2024-08-18
Accepted:
2024-12-15
Online:
2025-05-20
Published:
2025-03-31
Contact:
Rui Yang
Supported by:
摘要:
城市绿地是生物多样性保护的重要载体, 大学校园作为城市建成区的缩影, 对提升小微绿地质量与生物多样性保护有重要意义。然而, 已有大学校园生物多样性研究缺乏连续的时间与空间信息, 且未明确物种与绿地内部植被结构的关联, 可能影响小微绿地内部结构质量的优化。本文以清华大学校园鸟类为研究对象, 通过实地调查鸟类与植物群落, 运用广义线性模型和冗余分析, 探讨了大学校园的鸟类分布时空格局以及鸟类组成与绿地特征的关联。研究发现, 鸟类在大学校园绿地内部呈现集中分布且存在季节差异。鸟类组成与木本食源植物丰富度、灌木均匀度、草本盖度、人工草地盖度、乔木盖度存在关联。其中木本食源植物丰富度与鸟类多度、丰富度及Shannon多样性指数呈正向关联, 灌木均匀度与鸟类丰富度及Shannon多样性指数呈正向关联, 乔木盖度和人工草地盖度仅同时分别小于等于37.5%与小于39.8%时与鸟类多度呈正向关联, 而草本盖度则与鸟类丰富度及Shannon多样性指数呈负向关联。此外, 不同居留型鸟类的生境选择存在差异, 秋季的过境鸟分布仅关联于植被结构, 留鸟和冬候鸟分布同时关联于绿地物理特征和植被结构。我们建议在遵循自然规律营造城市小微绿地时, 应控制乔木盖度和人工草地盖度同时在约40%以下, 提升木本食源植物丰富度和灌木均匀度, 并增加自然草本植物覆盖和植被结构层次。本研究面向城市小微绿地提出定量与定性结合的近自然绿地营造建议, 为落实《昆明-蒙特利尔全球生物多样性框架》和《中国生物多样性保护战略与行动计划(2023-2030年)》的城市蓝绿空间质量提升目标提供了科学依据。
曾子轩, 杨锐, 黄越, 陈路遥 (2025) 清华大学校园鸟类多样性特征与环境关联. 生物多样性, 33, 24373. DOI: 10.17520/biods.2024373.
Tz-Hsuan Tseng, Rui Yang, Yue Huang, Luyao Chen (2025) Characteristics of bird diversity and environmental relationships in Tsinghua University campus. Biodiversity Science, 33, 24373. DOI: 10.17520/biods.2024373.
指标维度 Indicator dimension | 指标名称 Indicator name |
---|---|
鸟类组成特征 Bird community composition | 鸟类多度*, 鸟类丰富度*, 鸟类均匀度, Shannon多样性指数* Bird abundance*, bird richness*, bird evenness, Shannon diversity index* |
绿地物理特征 Physical characteristics of green space | 面积, 周长, 距离水体距离, 水体面积, 水体盖度*, 距离道路距离*, 平均噪音*, 平均进入人数 Area, perimeter, distance to water, water area, water coverage*, distance to road*, average noise*, average people |
绿地植被结构 Vegetation structure of green space | 乔木面积, 乔木盖度*, 乔木多度*, 乔木丰富度, 乔木均匀度, 乔木多样性, 灌木面积, 灌木盖度*, 灌木多度, 灌木丰富度, 灌木均匀度*, 灌木多样性, 草本盖度*, 草本多度*, 草本丰富度*, 木本食源植物面积, 木本食源植物盖度, 木本食源植物多度, 木本食源植物丰富度*, 木本食源植物均匀度, 木本食源植物多样性*, 本土物种面积, 本土物种盖度, 本土物种多度, 本土物种丰富度, 本土物种均匀度, 本土物种多样性, 人工草地盖度*, 自然草地盖度, 裸地盖度 Tree area, tree coverage*, tree abundance*, tree richness, tree evenness, tree diversity, shrub area, shrub coverage*, shrub abundance, shrub richness, shrub evenness*, shrub diversity, grass coverage*, grass abundance*, grass richness*, woody food plant area, woody food plant coverage, woody food plant abundance, woody food plant richness*, woody food plant evenness, woody food plant diversity*, native species area, native species coverage, native species abundance, native species richness, native species evenness, native species diversity, artificial grass coverage*, natural grass coverage, bare coverage |
表1 鸟类与绿地组成特征的调查指标
Table 1 Indicators of bird and green space composition characteristics
指标维度 Indicator dimension | 指标名称 Indicator name |
---|---|
鸟类组成特征 Bird community composition | 鸟类多度*, 鸟类丰富度*, 鸟类均匀度, Shannon多样性指数* Bird abundance*, bird richness*, bird evenness, Shannon diversity index* |
绿地物理特征 Physical characteristics of green space | 面积, 周长, 距离水体距离, 水体面积, 水体盖度*, 距离道路距离*, 平均噪音*, 平均进入人数 Area, perimeter, distance to water, water area, water coverage*, distance to road*, average noise*, average people |
绿地植被结构 Vegetation structure of green space | 乔木面积, 乔木盖度*, 乔木多度*, 乔木丰富度, 乔木均匀度, 乔木多样性, 灌木面积, 灌木盖度*, 灌木多度, 灌木丰富度, 灌木均匀度*, 灌木多样性, 草本盖度*, 草本多度*, 草本丰富度*, 木本食源植物面积, 木本食源植物盖度, 木本食源植物多度, 木本食源植物丰富度*, 木本食源植物均匀度, 木本食源植物多样性*, 本土物种面积, 本土物种盖度, 本土物种多度, 本土物种丰富度, 本土物种均匀度, 本土物种多样性, 人工草地盖度*, 自然草地盖度, 裸地盖度 Tree area, tree coverage*, tree abundance*, tree richness, tree evenness, tree diversity, shrub area, shrub coverage*, shrub abundance, shrub richness, shrub evenness*, shrub diversity, grass coverage*, grass abundance*, grass richness*, woody food plant area, woody food plant coverage, woody food plant abundance, woody food plant richness*, woody food plant evenness, woody food plant diversity*, native species area, native species coverage, native species abundance, native species richness, native species evenness, native species diversity, artificial grass coverage*, natural grass coverage, bare coverage |
图2 调查范围内鸟类分布热点区域的季节变化图。(a)总体多度; (b)夏季多度; (c)秋季多度; (d)冬季多度; (e)总体丰富度; (f)夏季丰富度; (g)秋季丰富度; (h)冬季丰富度。
Fig. 2 Bird distribution hotspot and its seasonal change within the investigation area. (a) Overall abundance; (b) Summer abundance; (c) Autumn abundance; (d) Winter abundance; (e) Overall richness; (f) Summer richness; (g) Autumn richness; (h) Winter richness.
图3 不同居留型鸟类的空间分布图(a)和各绿地的居留型鸟类丰富度(b)
Fig. 3 Distribution of different migratory birds (a) and richness of different migratory birds among investigated campus green space (b)
绿地名称 Green space | 比值 Ratio (%) | 绿地名称 Green space | 比值 Ratio (%) | 绿地名称 Green space | 比值 Ratio (%) |
---|---|---|---|---|---|
新清华西南侧 XQHsw | 93.20 | 零零阁 LLG | 5.57 | 主楼北侧 ZLn | 2.34 |
世纪林 SJL | 32.49 | 主楼东南侧 ZLse | 5.51 | 续园 XY | 2.25 |
新清华南侧 XQHs | 26.49 | 主楼西南侧 ZLsw | 4.27 | 近春园 JCY | 2.07 |
工字厅 GZT | 12.32 | 桃李北侧 TLn | 3.73 | 雕塑园 DSY | 1.97 |
礼射广场 LSGC | 10.96 | 情人坡 QRP | 2.68 | 水木清华 SMQH | 1.42 |
紫荆北侧 ZJn | 6.23 | 世纪林北侧 SJLn | 2.40 | 大礼堂南侧 DLTs | - |
表2 清华大学校园绿地乔木面积与灌木面积的比值
Table 2 The ratio of tree and shrub area in the green space of Tsinghua University campus
绿地名称 Green space | 比值 Ratio (%) | 绿地名称 Green space | 比值 Ratio (%) | 绿地名称 Green space | 比值 Ratio (%) |
---|---|---|---|---|---|
新清华西南侧 XQHsw | 93.20 | 零零阁 LLG | 5.57 | 主楼北侧 ZLn | 2.34 |
世纪林 SJL | 32.49 | 主楼东南侧 ZLse | 5.51 | 续园 XY | 2.25 |
新清华南侧 XQHs | 26.49 | 主楼西南侧 ZLsw | 4.27 | 近春园 JCY | 2.07 |
工字厅 GZT | 12.32 | 桃李北侧 TLn | 3.73 | 雕塑园 DSY | 1.97 |
礼射广场 LSGC | 10.96 | 情人坡 QRP | 2.68 | 水木清华 SMQH | 1.42 |
紫荆北侧 ZJn | 6.23 | 世纪林北侧 SJLn | 2.40 | 大礼堂南侧 DLTs | - |
解释变量 Explanatory variables | 估计值(自助抽样法) Estimate (bootstrap) | exp (估计值) exp (Estimate) | 标准误 Standard error | Z | P | R2 | |
---|---|---|---|---|---|---|---|
鸟类多度 Bird abundance | |||||||
截距 Intercept | 5.75 [5.71 - 5.79] | 315.05 | 0.02 | 86.91 | < 0.001 | 0.86 | |
木本食源植物丰富度 Woody food plant richness | 0.29 [0.26 - 0.33] | 1.34 | 0.03 | 3.23 | 0.001 | ||
人工草地盖度 Artificial grass coverage | -0.14 [-0.19 - -0.10] | 0.86 | 0.02 | -1.90 | 0.057 | ||
乔木盖度 Tree coverage | -0.13 [-0.18 - -0.10] | 0.87 | 0.02 | -2.03 | 0.042 | ||
人工草地盖度 × 乔木盖度 Artificial grass coverage × tree coverage | 0.56 [0.50 - 0.60] | 1.74 | 0.03 | 5.25 | < 0.001 | ||
鸟类丰富度 Bird richness | |||||||
截距 Intercept | 2.87 [2.83 - 2.90] | 17.58 | 0.02 | 44.01 | < 0.001 | 0.77 | |
木本食源植物丰富度 Woody food plant richness | 0.25 [0.21 - 0.29] | 1.29 | 0.02 | 3.32 | 0.005 | ||
草本盖度 Grass coverage | -0.11 [-0.13 - -0.10] | 0.89 | 0.02 | -1.98 | 0.069 | ||
灌木均匀度 Shrub evenness | 0.27 [0.23 - 0.31] | 1.30 | 0.03 | 2.77 | 0.015 | ||
乔木盖度 Tree coverage | -0.18 [-0.23 - -0.15] | 0.83 | 0.02 | -2.39 | 0.032 | ||
Shannon多样性指数 Shannon diversity index | |||||||
截距 Intercept | 0.65 [0.63 - 0.67] | 1.91 | 0.01 | 19.46 | < 0.001 | 0.78 | |
木本食源植物丰富度 Woody food plant richness | 0.10 [0.07 - 0.11] | 1.10 | 0.01 | 2.19 | 0.045 | ||
草本盖度 Grass coverage | -0.09 [-0.10 - -0.09] | 0.91 | 0.01 | -2.68 | 0.017 | ||
灌木均匀度 Shrub evenness | 0.19 [0.17 - 0.20] | 1.20 | 0.01 | 4.29 | 0.000 |
表3 广义线性模型最优模型总结
Table 3 Summary of the optimal models for generalized linear models
解释变量 Explanatory variables | 估计值(自助抽样法) Estimate (bootstrap) | exp (估计值) exp (Estimate) | 标准误 Standard error | Z | P | R2 | |
---|---|---|---|---|---|---|---|
鸟类多度 Bird abundance | |||||||
截距 Intercept | 5.75 [5.71 - 5.79] | 315.05 | 0.02 | 86.91 | < 0.001 | 0.86 | |
木本食源植物丰富度 Woody food plant richness | 0.29 [0.26 - 0.33] | 1.34 | 0.03 | 3.23 | 0.001 | ||
人工草地盖度 Artificial grass coverage | -0.14 [-0.19 - -0.10] | 0.86 | 0.02 | -1.90 | 0.057 | ||
乔木盖度 Tree coverage | -0.13 [-0.18 - -0.10] | 0.87 | 0.02 | -2.03 | 0.042 | ||
人工草地盖度 × 乔木盖度 Artificial grass coverage × tree coverage | 0.56 [0.50 - 0.60] | 1.74 | 0.03 | 5.25 | < 0.001 | ||
鸟类丰富度 Bird richness | |||||||
截距 Intercept | 2.87 [2.83 - 2.90] | 17.58 | 0.02 | 44.01 | < 0.001 | 0.77 | |
木本食源植物丰富度 Woody food plant richness | 0.25 [0.21 - 0.29] | 1.29 | 0.02 | 3.32 | 0.005 | ||
草本盖度 Grass coverage | -0.11 [-0.13 - -0.10] | 0.89 | 0.02 | -1.98 | 0.069 | ||
灌木均匀度 Shrub evenness | 0.27 [0.23 - 0.31] | 1.30 | 0.03 | 2.77 | 0.015 | ||
乔木盖度 Tree coverage | -0.18 [-0.23 - -0.15] | 0.83 | 0.02 | -2.39 | 0.032 | ||
Shannon多样性指数 Shannon diversity index | |||||||
截距 Intercept | 0.65 [0.63 - 0.67] | 1.91 | 0.01 | 19.46 | < 0.001 | 0.78 | |
木本食源植物丰富度 Woody food plant richness | 0.10 [0.07 - 0.11] | 1.10 | 0.01 | 2.19 | 0.045 | ||
草本盖度 Grass coverage | -0.09 [-0.10 - -0.09] | 0.91 | 0.01 | -2.68 | 0.017 | ||
灌木均匀度 Shrub evenness | 0.19 [0.17 - 0.20] | 1.20 | 0.01 | 4.29 | 0.000 |
图4 人工草地盖度与乔木盖度交互作用示意图。(a)人工草地盖度与乔木盖度在标准化值为-1、0、1时对鸟类多度的贡献率, 其中-1、0、1分别表示标准化后低于均值1个标准差、均值本身、高于均值1个标准差的水平; (b)清华大学校园绿地内人工草地盖度与乔木盖度对鸟类多度的贡献; (c)乔木盖度与鸟类多度散点图; (d)人工草地盖度与鸟类多度散点图。(c)和(d)的曲线为Loess曲线, 灰色区域为95%置信区间。
Fig. 4 Interaction between artificial grass coverage and tree coverage. (a) Contribution to bird abundance from tree coverage and artificial grass coverage at standardized values of -1, 0, 1, the values -1, 0, and 1 corresponded to -1 SD, mean value, and +1 SD after standardization; (b) Contribution to bird abundance from tree coverage and artificial grass coverage in the green space of Tsinghua University; (c) Scatter plot of tree coverage and bird abundance; (d) Scatter plot of artificial grass coverage and bird abundance. Curves in (c) and (d) represent Loess curve with shaded areas indicating 95% confidence intervals.
居留型 Residency type | 解释变量 Explanatory variables | P | 调整后R2 Adjusted R2 | 显著典范轴累积解释变差 Cumulative explained variation of significant canonical axes | 显著典范轴解释率占所有轴比例 Proportion of variance explained by significant canonical axes |
---|---|---|---|---|---|
留鸟 Residents | 面积, 距离水体距离, 平均进入人数, 灌木多样性 Area, distance to water, average people, shrub diversity | 0.001 | 0.34 | 38% | 77% |
过境鸟 Passage migrants | 灌木盖度, 草本多度, 自然草地盖度, 乔木丰富度, 草本丰富度 Shrub coverage, grass abundance, natural grass coverage, tree richness, grass richness | 0.001 | 0.38 | 37% | 65% |
冬候鸟 Winter visitors | 裸地盖度, 水体盖度, 乔木丰富度 Bare coverage, water coverage, tree richness | 0.002 | 0.22 | 19% | 54% |
夏候鸟 Summer breeders | 乔木多度, 乔木盖度, 水体盖度, 草本丰富度 Tree abundance, tree coverage, water coverage, grass richness | 0.089 | - | - | - |
表4 留鸟、过境鸟、冬候鸟与环境因子关系的冗余分析结果
Table 4 Redundancy analysis of the relationship between residents, passage migrants, winter visitors and environmental factors
居留型 Residency type | 解释变量 Explanatory variables | P | 调整后R2 Adjusted R2 | 显著典范轴累积解释变差 Cumulative explained variation of significant canonical axes | 显著典范轴解释率占所有轴比例 Proportion of variance explained by significant canonical axes |
---|---|---|---|---|---|
留鸟 Residents | 面积, 距离水体距离, 平均进入人数, 灌木多样性 Area, distance to water, average people, shrub diversity | 0.001 | 0.34 | 38% | 77% |
过境鸟 Passage migrants | 灌木盖度, 草本多度, 自然草地盖度, 乔木丰富度, 草本丰富度 Shrub coverage, grass abundance, natural grass coverage, tree richness, grass richness | 0.001 | 0.38 | 37% | 65% |
冬候鸟 Winter visitors | 裸地盖度, 水体盖度, 乔木丰富度 Bare coverage, water coverage, tree richness | 0.002 | 0.22 | 19% | 54% |
夏候鸟 Summer breeders | 乔木多度, 乔木盖度, 水体盖度, 草本丰富度 Tree abundance, tree coverage, water coverage, grass richness | 0.089 | - | - | - |
图5 留鸟(a)、过境鸟(b)、冬候鸟(c)与环境因子关系的冗余分析II型标尺三序图
Fig. 5 Triplot of the scaling II in redundancy analysis of the relationship between residents (a), passage migrants (b), winter visitors (c) and environmental factors
[1] |
Barot S, Abbadie L, Auclerc A, Barthélémy C, Bérille E, Billet P, Clergeau P, Consales JN, Deschamp-Cottin M, David A, Devigne C, Dham V, Dusza Y, Gaillard A, Gonzalez E, Hédont M, Labarraque D, Le Bastard AM, Morel JL, Petit-Berghem Y, Rémy E, Rochelle-Newall E, Veyrières M (2019) Urban ecology, stakeholders and the future of ecology. Science of the Total Environment, 667, 475-484.
DOI |
[2] | Barton K (2009) MuMIn: Multi-model inference. R package version 0.12.2/r18. https://cran.r-project.org/web/packages/MuMIn/index.html. (accessed on 2021-01-27) |
[3] | Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York. |
[4] | Buler JJ, Moore FR (2011) Migrant-habitat relationships during stopover along an ecological barrier: Extrinsic constraints and conservation implications. Journal of Ornithology, 152, 101-112. |
[5] | Carbó-Ramírez P, Zuria I (2011) The value of small urban greenspaces for birds in a Mexican city. Landscape and Urban Planning, 100, 213-222. |
[6] | Clergeau P, Jokimäki J, Savard JL (2001) Are urban bird communities influenced by the bird diversity of adjacent landscapes? Journal of Applied Ecology, 38, 1122-1134. |
[7] | Conole LE, Kirkpatrick JB (2011) Functional and spatial differentiation of urban bird assemblages at the landscape scale. Landscape and Urban Planning, 100, 11-23. |
[8] | Convention on Biological Diversity(2012) Cities and Biodiversity Outlook: Action and Policy. CBD Secretariat, Montreal. |
[9] | Convention on Biological Diversity(2022) Kunming-Montreal Global Biodiversity Framework. https://www.cbd.int/gbf. (accessed on 2024-04-28) |
[10] | Daniel B, Zaunbrecher BS, Paas B, Ottermanns R, Ziefle M, Roß-Nickoll M (2018) Assessment of urban green space structures and their quality from a multidimensional perspective. Science of the Total Environment, 615, 1364-1378. |
[11] | Donatelli RJ, Batista GT (2012) Relation between green spaces and bird community structure in an urban area in Southeast Brazil. Urban Ecosystems, 15, 111-131. |
[12] | Doi H, Chang KH, Nishibe Y, Imai H, Nakano SI (2013) Lack of congruence in species diversity indices and community structures of planktonic groups based on local environmental factors. PLoS ONE, 8, e69594. |
[13] | Dyson K (2020) Conserving native trees increases native bird diversity and community composition on commercial office developments. Journal of Urban Ecology, 6, juaa033. |
[14] | Ferenc M, Sedlácek O, Fuchs R (2014) How to improve urban greenspace for woodland birds: Site and local-scale determinants of bird species richness. Urban Ecosystems, 17, 625-640. |
[15] | Forman RTT (2014) Urban Ecology:Science of Cities. Cambridge University Press, New York. |
[16] | Gao BY, Gong P, Zhang WY, Yang J, Si YL (2021) Multiscale effects of habitat and surrounding matrices on waterbird diversity in the Yangtze River Floodplain. Landscape Ecology, 36, 179-190. |
[17] | Huang Y (2015) The Methodology of Bird Habitats’ Making and Planning at Beijing Urban Green Spaces. PhD dissertation, Tsinghua University, Beijing. (in Chinese with English abstract) |
[黄越 (2015) 北京城市绿地鸟类生境规划与营造方法研究. 博士学位论文, 清华大学, 北京.] | |
[18] | Hubbell SP (2011) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey. |
[19] | Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145-159. |
[20] | Jakobsson S, Lindborg R (2017) The importance of trees for woody pasture bird diversity and effects of the European Union’s tree density policy. Journal of Applied Ecology, 54, 1638-1647. |
[21] | Jasmani Z, Ravn HP, van den Bosch CCK (2017) The influence of small urban parks characteristics on bird diversity: A case study of Petaling Jaya, Malaysia. Urban Ecosystems, 20, 227-243. |
[22] | Kang WM, Minor ES, Park CR, Lee D (2015) Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosystems, 18, 857-870. |
[23] | Kimber O, Gilby BL, Henderson CJ, Olds AD, Connolly RM, Maslo B, Weston MA, Rowden A, Kelaher B, Schlacher TA (2020) The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Global Ecology and Conservation, 23, e01071. |
[24] | Kissling WD, Rahbek C, Böhning-Gaese K (2007) Food plant diversity as broad-scale determinant of avian frugivore richness. Proceedings of the Royal Society B: Biological Sciences, 274, 799-808. |
[25] | Lerman SB, Contosta AR, Milam J, Bang C (2018) To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biological Conservation, 221, 160-174. |
[26] |
Lerman SB, Warren PS (2011) The conservation value of residential yards: Linking birds and people. Ecological Applications, 21, 1327-1339.
PMID |
[27] | Lewke RE (1982) A comparison of foraging behavior among permanent, summer, and winter resident bird groups. The Condor, 84, 84-90. |
[28] | Li FZ, Zheng W, Wang Y, Liang JH, Xie S, Guo SY, Li X, Yu CM (2019) Urban green space fragmentation and urbanization: A spatiotemporal perspective. Forests, 10, 333. |
[29] | Liordos V, Jokimäki J, Kaisanlahti-Jokimäki ML, Valsamidis E, Kontsiotis VJ (2021) Patch, matrix and disturbance variables negatively influence bird community structure in small-sized managed green spaces located in urban core areas. Science of the Total Environment, 801, 149617. |
[30] | Liu JJ, Yu MJ, Tomlinson K, Ferry Slik JW (2017) Patterns and drivers of plant biodiversity in Chinese university campuses. Landscape and Urban Planning, 164, 64-70. |
[31] | Liu JJ, Zhao YP, Si XF, Feng G, Slik F, Zhang J (2021) University campuses as valuable resources for urban biodiversity research and conservation. Urban Forestry & Urban Greening, 64, 127255. |
[32] | Lwin YH, Wang L, Li GG, Maung KW, Swa K, Quan RC (2021) Diversity, distribution and conservation of large mammals in northern Myanmar. Global Ecology and Conservation, 29, e01736. |
[33] | Marcus CC, Francis C (1997) People Places:Design Guidlines for Urban Open Space. Van Nostrand Reinhold, New York. |
[34] | McCaffrey RE, Mannan RW (2012) How scale influences birds’ responses to habitat features in urban residential areas. Landscape and Urban Planning, 105, 274-280. |
[35] | Morelli F, Benedetti Y, Su TP, Zhou B, Moravec D, Šímová P, Liang W (2017) Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban Forestry & Urban Greening, 23, 84-92. |
[36] | Mühlbauer M, Weisser WW, Müller N, Meyer ST (2021) A green design of city squares increases abundance and diversity of birds. Basic and Applied Ecology, 56, 446-459. |
[37] | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) ‘vegan’: Community Ecology Package. https://cran.r-project.org/web/packages/vegan/index.html. (accessed on 2021-10-27) |
[38] | Paker Y, Yom-Tov Y, Alon-Mozes T, Barnea A (2014) The effect of plant richness and urban garden structure on bird species richness, diversity and community structure. Landscape and Urban Planning, 122, 186-195. |
[39] | Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. |
[40] | R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[41] | Sarkar D (2008) Lattice: Multivariate Data Visualization with R. Springer, New York. |
[42] | Shannon C (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423. |
[43] | Shih WY (2018) Bird diversity of greenspaces in the densely developed city centre of Taipei. Urban Ecosystems, 21, 379-393. |
[44] | Venables WN, Ripley BD (2013) Modern Applied Statistics with S-PLUS. Springer Science & Business Media, Berlin. |
[45] | Wang X, Svenning JC, Liu JJ, Zhao ZC, Zhang ZC, Feng G, Si XF, Zhang J (2021) Regional effects of plant diversity and biotic homogenization in urban greenspace—The case of university campuses across China. Urban Forestry & Urban Greening, 62, 127170. |
[46] |
Wang Y, Xu J, Yang G, Li HQ, Wu SY, Tang HM, Ma B, Wang ZH (2014) The composition of common woody plant species and their influence on bird communities in urban green areas. Biodiversity Science, 22, 196-207. (in Chinese with English abstract)
DOI |
[王勇, 许洁, 杨刚, 李宏庆, 吴时英, 唐海明, 马波, 王正寰 (2014) 城市公共绿地常见木本植物组成对鸟类群落的影响. 生物多样性, 22, 196-207.]
DOI |
|
[47] | Wang YH, Zhao QQ, Diao YX, Gu BJ, Weng Y, Zhang ZJ, Chen YB, Wang F (2023) Diel activity, habitat utilization, and response to anthropogenic interference of small Indian civets (Viverricula indica) in Shanghai urban areas based on camera trapping. Biodiversity Science, 31, 22294. (in Chinese with English abstract) |
[王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放 (2023) 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应. 生物多样性, 31, 22294.]
DOI |
|
[48] | Warton DI, Lyons M, Stoklosa J, Ives AR (2016) Three points to consider when choosing a LM or GLM test for count data. Methods in Ecology and Evolution, 7, 882-890. |
[49] | Wen C, Han D, Li S, Shen XL, Chen W, Wang H, Zhu XJ, Xiao LY, Liu MQ, Lü Z (2014) Community structure of birds at Yanyuan, Peking University. Acta Scientiarum Naturalium Universitatis Pekinensis, 50, 416-428. (in Chinese with English abstract) |
[闻丞, 韩冬, 李晟, 申小莉, 陈炜, 王昊, 朱小健, 肖凌云, 刘美琦, 吕植 (2014) 北京大学燕园鸟类组成. 北京大学学报(自然科学版), 50, 416-428.] | |
[50] | Wickham H (2016) ggplot2:Elegant Graphics for Data Analysis. Springer-Verlag, New York. |
[51] | Yang G (2014) The Influence of Multiple-Scale Habitat Structure on Bird Community in Urban Parks. PhD dissertation, East China Normal University, Shanghai. (in Chinese with English abstract) |
[杨刚 (2014) 多尺度下的城市公园生境格局对鸟类群落的影响. 博士学位论文, 华东师范大学, 上海.] | |
[52] | Zeng ZX, Chen XC, Cao Y, Yang R (2021) Progress and suggestions of biodiversity conservation on university campuses. Environmental Protection, 49(21), 35-40. (in Chinese) |
[曾子轩, 陈雪纯, 曹越, 杨锐 (2021) 大学校园生物多样性保护进展与建议. 环境保护, 49(21), 35-40.] | |
[53] | Zhang WJ, Liang CX, Liu J, Si XF, Feng G (2018) Species richness, phylogenetic and functional structure of bird communities in Chinese university campuses are associated with divergent variables. Urban Ecosystems, 21, 1213-1225. |
[54] | Zhang Y, Jiang C, Chen S, Zhang YY, Shi H, Chen B, Mao LF (2021) Effects of landscape attributes on campuses bird species richness and diversity, implications for eco-friendly urban planning. Sustainability, 13, 5558. |
[55] | Zhao K (2017) Comparative analysis on plant configuration of campus green space in Tsinghua University. Xiandai Horticulture, (17), 30-32. (in Chinese) |
[赵坤 (2017) 清华大学校园绿地植物配置的比较分析. 现代园艺, (17), 30-32.] | |
[56] | Zhao K, Pan JQ (2018) Analysis of configuration of woody plants within campus green spaces in Tsinghua University. Journal of Southwest Forestry University (Social Sciences), 2(1), 87-91. (in Chinese with English abstract) |
[赵坤, 潘江琼 (2018) 清华大学校园绿地木本植物结构及配置分析. 西南林业大学学报(社会科学), 2(1), 87-91.] | |
[57] | Zhao XR (2021) Birds of Beijing. China Forestry Publishing House, Beijing. (in Chinese) |
[赵欣如 (2021) 北京鸟类图谱. 中国林业出版社, 北京.] | |
[58] | Zhao ZJ (2001) A Handbook of the Birds of China. Jilin Science and Technology Publishing House, Changchun. (in Chinese) |
[赵正阶 (2001) 中国鸟类志. 吉林科学技术出版社, 长春.] | |
[59] | Zheng GM (2017) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese) |
[郑光美 (2017) 中国鸟类分类与分布名录(第三版). 科学出版社, 北京.] | |
[60] | Zi QR, Du W, Wang XF (2021) Analysis of plant diversity of Chinese university campuses. Biotic Resources, 43, 284-291. (in Chinese with English abstract) |
[资沁茹, 杜巍, 汪小凡 (2021) 中国高校校园植物的多样性分析. 生物资源, 43, 284-291.] |
[1] | 赵富伟. 遗传资源数字序列信息多边机制的谈判进程及我国的对策[J]. 生物多样性, 2025, 33(6): 24559-. |
[2] | 李云翱, 张文富, 赵桂刚, 杨春燕, 陈向清, 袁盛东, 曹敏, 蔡望, 杨洁. 利用空气环境DNA监测西双版纳20公顷森林动态样地陆生脊椎动物多样性[J]. 生物多样性, 2025, 33(6): 24318-. |
[3] | 干靓, 刘巷序, 鲁雪茗, 岳星. 全球生物多样性热点地区中国大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[4] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[5] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[6] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野: 趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[7] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[8] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果[J]. 生物多样性, 2025, 33(5): 24531-. |
[9] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升[J]. 生物多样性, 2025, 33(5): 24524-. |
[10] | 杨军, 杨旭东, 刘心怡, 周景. 面向《昆蒙框架》目标12的中国城市生物多样性研究展望[J]. 生物多样性, 2025, 33(5): 25104-. |
[11] | 杨梦婵, 方启年, 戎灿中, 胡思帆, 赵晶晶, 梁智健, 李添明. 公民科学在城市生物多样性调查监测上的应用现状与前景[J]. 生物多样性, 2025, 33(5): 24464-. |
[12] | 齐月, 李俊生, 侯亚男. 城市植物多样性的人为影响因素及保护管理策略[J]. 生物多样性, 2025, 33(5): 24484-. |
[13] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[14] | 王太, 宋福俊, 张永胜, 娄忠玉, 张艳萍, 杜岩岩. 河西走廊内陆河水系鱼类多样性及资源现状[J]. 生物多样性, 2025, 33(4): 24387-. |
[15] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn