生物多样性 ›› 2025, Vol. 33 ›› Issue (2): 24192.  DOI: 10.17520/biods.2024192  cstr: 32101.14.biods.2024192

• 综述 • 上一篇    下一篇

植物基因组大小与性状关系的研究进展

曹东1,2,3(), 李焕龙1,2,3(), 彭扬1,2,3(), 魏存争1,2,3,*()()   

  1. 1.中国科学院植物研究所植被与环境变化重点实验室, 北京 100093
    2.中国科学院大学, 北京 100049
    3.国家植物园, 北京 100093
  • 收稿日期:2024-05-20 接受日期:2024-08-01 出版日期:2025-02-20 发布日期:2024-11-05
  • 通讯作者: *E-mail: weicunzheng@ibcas.ac.cn
  • 基金资助:
    国家自然科学基金(32371620);华能集团总部科技项目(HNKJ22-H48)

Progresses in the study of the relationship between plant genome size and traits

Cao Dong1,2,3(), Li Huanlong1,2,3(), Peng Yang1,2,3(), Wei Cunzheng1,2,3,*()()   

  1. 1 Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
    3 China National Botanical Garden, Beijing 100093, China
  • Received:2024-05-20 Accepted:2024-08-01 Online:2025-02-20 Published:2024-11-05
  • Contact: *E-mail: weicunzheng@ibcas.ac.cn
  • Supported by:
    National Natural Science Foundation of China(32371620);China Huaneng Group Headquarters Technology Project(HNKJ22-H48)

摘要:

物种的基因组大小反映了基因组扩张和收缩机制之间的动态平衡, 其受自然选择和遗传漂变等多重因素影响。关于基因组大小与性状关系的研究成果众多, 但尚缺乏系统性的梳理和总结。本文总结了植物基因组大小与41个性状之间的60种不同关联, 并尝试将这些性状划分为9个尺度, 包括分子、细胞、组织、器官、个体、种群、群落、生态系统和生物地理尺度。为解释基因组大小与性状之间的关系, 本文在现有假说的基础上, 提出了“基因组大小分区假说”。该假说认为, 植物基因组大小的分布范围内可能存在两个平衡点和一个最优点, 而环境条件如养分和水分的变化, 可能会改变这些平衡点和最优点的位置, 从而驱动植物基因组大小向新的最优点方向演化, 形成新的平衡。最后, 本文建议将基因组大小作为核心功能性状纳入生态模型, 以提升对群落和生态系统应对全球环境挑战(如氮沉降和气候变化)的理解。

关键词: 基因组大小, 养分限制, 水分限制, 阈值, 自然选择, 遗传漂变

Abstract

Background & Aim: Previous studies have found a correlation between genome size (GS) and many distinct traits in plants. However, there is a lack of systematic summarization of these connections. The aim of this review is to provide a comprehensive overview of known relationships between GS and plant traits, while also proposing a new hypothesis to better explain these correlations.

Results: Plant traits were first divided into nine categories: molecule, cell, tissue, organ, individual, population, community, ecosystem and biogeography. Next, we applied our hypothesis to better explain the ecological consequences of GS and the plant evolution in the context of each trait. Our new hypothesis states that there may be two balance points and one optimal point in the range of GS. Changes in environmental factors such as nutrients and moisture will change the position of balance points and optimal point. This shift drives plant GS to evolve to a new optimal point, allowing the plant to adjust to new environmental stresses.

Conclusions: We propose that GS should be considered as a key plant functional trait and incorporated into future predictive models, which will improve our understanding of how communities and ecosystems respond to global environmental challenges, such as nitrogen deposition and extreme drought events.

Key words: genome size, nutrient limitation, water limitation, threshold, natural selection, genetic drift