生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24255. DOI: 10.17520/biods.2024255 cstr: 32101.14.biods.2024255
徐智超1,2(), 朱美慧1,2, 毛子昆1,2(
), 王绪高1,2,*(
)(
)
收稿日期:
2024-06-23
接受日期:
2024-09-27
出版日期:
2024-12-20
发布日期:
2024-12-17
通讯作者:
E-mail: 基金资助:
Zhichao Xu1,2(), Meihui Zhu1,2, Zikun Mao1,2(
), Xugao Wang1,2,*(
)(
)
Received:
2024-06-23
Accepted:
2024-09-27
Online:
2024-12-20
Published:
2024-12-17
Contact:
E-mail: Supported by:
摘要: 大气氮沉降是驱动森林生物多样性变化的重要因子。尽管已有大量研究证实氮添加能够显著改变森林生态系统林下层种群密度以及物种多样性, 但现有研究大多局限于草本植物。而乔木幼苗阶段作为森林更新的关键时期, 其物种组成及动态变化对氮添加的响应趋势和内在机理仍不清晰。本研究依托长白山温带阔叶红松林氮添加控制试验平台, 基于连续7年的乔木幼苗动态监测数据, 分析不同氮添加处理对幼苗数量动态及物种多样性的影响; 并以负密度制约效应为切入点, 探讨氮添加影响物种多样性的机制。结果表明, 氮添加显著降低了群落水平的幼苗总个体和增补数量, 但增强了幼苗年际动态相似性。低氮处理的物种丰富度和Shannon-Wiener指数均显著低于对照组, 而Shannon-Wiener指数在中氮处理下显著高于对照组。此外, 同种幼苗负密度制约效应随氮添加浓度的升高呈现加剧趋势, 且与物种丰富度、Shannon-Wiener指数和Pielou均匀度指数显著负相关, 这证明了氮沉降对同种负密度制约效应的影响是改变物种多样性的潜在机制。综上, 本研究明确了氮添加对长白山温带阔叶红松林乔木幼苗动态的影响, 以密度制约效应为视角揭示了氮添加对物种多样性的作用机理, 为研究氮沉降背景下温带森林幼苗动态及其响应机制提供了新思路。
徐智超, 朱美慧, 毛子昆, 王绪高 (2024) 氮添加对东北温带阔叶红松林幼苗动态的影响. 生物多样性, 32, 24255. DOI: 10.17520/biods.2024255.
Zhichao Xu, Meihui Zhu, Zikun Mao, Xugao Wang (2024) Effects of nitrogen addition on seedling dynamics in a broad-leaved Korean pine forest in Northeast China. Biodiversity Science, 32, 24255. DOI: 10.17520/biods.2024255.
图1 对照和加氮处理下幼苗动态及其多样性指数(平均值 ± 标准误)。CK、LN、MN和HN分别代表对照、低氮、中氮和高氮处理。图中不同小写字母表示幼苗动态在不同处理间差异显著(P < 0.05)。
Fig. 1 Effects of nitrogen addition on seedling dynamics (mean ± SE). CK, LN, MN, and HN represent the contrast, low-level nitrogen addition, medium-level nitrogen addition, and high-level nitrogen addition, respectively. The different lowercase letters indicate significant difference (P < 0.05).
图2 加氮处理对同种和异种密度制约效应的影响。CK、LN、MN和HN分别代表对照、低氮、中氮和高氮处理。
Fig. 2 Effects of nitrogen addition on conspecific and heterospecific density dependence. CK, LN, MN, and HN represent the control, low-level nitrogen addition, medium-level nitrogen addition, and high-level nitrogen addition, respectively. A.con, Conspecific adult density dependence; A.het, Heterospecific adult density dependence; S.con, Conspecific seedling density dependence; S.het, Heterospecific seedling density dependence.
图3 加氮处理调节邻域幼苗和大树密度对幼苗存活的影响。CK、LN、MN和HN分别代表对照、低氮、中氮和高氮处理。
Fig. 3 Response of seedling survival to seedling/adult density for nitrogen addition. CK, LN, MN, and HN represent the control, low-level nitrogen addition, medium-level nitrogen addition, and high-level nitrogen addition, respectively.
图4 同种和异种密度制约效应与幼苗多样性的关系。实线代表幼苗多样性随密度制约效应显著变化(P < 0.05), 虚线代表幼苗多样性随密度制约效应变化不显著(P > 0.05)。S.con: 同种幼苗密度制约效应; A.con: 同种大树密度制约效应; S.het: 异种幼苗密度制约效应; A.het: 异种大树密度制约效应。
Fig. 4 The relationships between conspecific/heterospecific density dependence and seedling diversity. Solid lines indicate the seedling diversity changed significantly with seedling/adult density dependence (P < 0.05), and dashed lines represent insignificant changes in seedling diversity in response to seedling/adult density dependence (P > 0.05). S.con, Conspecific seedling density dependence, A.con, Conspecific adult density dependence; S.het, Heterospecific seedling density dependence; A.het, Heterospecific adult density dependence.
[1] | Armolaitis K, Stakenas V (2001) The recovery of damaged pine forests in an area formerly polluted by nitrogen. The Scientific World, 1, 384-393. |
[2] | Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[3] | Canham CD, LePage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: Effects of shading versus crowding. Canadian Journal of Forest Research, 34, 778-787. |
[4] |
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332.
DOI PMID |
[5] | Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Numbers in Populations (eds den Boer PJ, Gradwell GR), pp. 298-312. PUDOC, Wageningen, the Netherlands. |
[6] |
Dong Y, Yang ZX, Dong K, Tang L, Zheng Y, Hu GB (2013) Effects of nitrogen application rate on faba bean Fusarium wilt and rhizospheric microbial metabolic functional diversity. Chinese Journal of Applied Ecology, 24, 1101-1108. (in Chinese with English abstract)
PMID |
[董艳, 杨智仙, 董坤, 汤利, 郑毅, 胡国斌 (2013) 施氮水平对蚕豆枯萎病和根际微生物代谢功能多样性的影响. 应用生态学报, 24, 1101-1108.] | |
[7] |
Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, MacKenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291-296.
PMID |
[8] | Fan HZ, Jin GZ (2022) Effects of nitrogen addition on species diversity of the understory plants in the Korean pine plantation. Acta Ecologica Sinica, 42, 9747-9760. (in Chinese with English abstract) |
[范慧珠, 金光泽 (2022) 氮添加对红松人工林草本层植物多样性的影响. 生态学报, 42, 9747-9760.] | |
[9] | Feng ZW (2000) Ecological effects and control strategies of acid deposition on ecosystems in China. Yunnan Environmental Science, 19, 1-6. (in Chinese with English abstract) |
[冯宗炜 (2000) 中国酸雨的生态影响和防治对策. 云南环境科学, 19, 1-6.] | |
[10] | Fu W, Wu H, Zhao AH, Hao ZP, Chen BD (2020) Ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects. Chinese Journal of Plant Ecology, 44, 475-493. (in Chinese with English abstract) |
[付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬 (2020) 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 44, 475-493.]
DOI |
|
[11] | Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. BioScience, 53, 341-356. |
[12] | Gao SJ, Wang CM, Wang P, Shang SS (2020) Effects of multi-form and multi-level nitrogen addition on root respiration and microbial respiration in temperate forest soil. Environmental Chemistry, 39, 1568-1577. (in Chinese with English abstract) |
[高士杰, 王春梅, 王鹏, 商帅帅 (2020) 多形态多水平氮添加对温带森林土壤根系呼吸和微生物呼吸的影响. 环境化学, 39, 1568-1577.] | |
[13] | Gelman A, Pardoe I (2006) Bayesian measures of explained variance and pooling in multilevel (hierarchical) models. Technometrics, 48, 241-251. |
[14] |
Hanbury-Brown AR, Ward RE, Kueppers LM (2022) Forest regeneration within earth system models: Current process representations and ways forward. New Phytologist, 235, 20-40.
DOI PMID |
[15] | Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
[16] |
Kuang X, Zhu K, Yuan ZQ, Lin F, Ye J, Wang XG, Wang YY, Hao ZQ (2017) Conspecific density dependence and community structure: Insights from 11 years of monitoring in an old-growth temperate forest in Northeast China. Ecology and Evolution, 7, 5191-5200.
DOI PMID |
[17] |
LaManna JA, Walton ML, Turner BL, Myers JA (2016) Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecology Letters, 19, 657-667.
DOI PMID |
[18] | Li J, Sang CP, Yang JY, Qu LR, Xia ZW, Sun H, Jiang P, Wang XG, He HB, Wang C (2021) Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry, 156, 108207. |
[19] | Lu XK, Mo JM, Zhang W, Mao QG, Liu RZ, Wang C, Wang SH, Zheng MH, Taiki M, Mao JH, Zhang YQ, Wang YF, Huang J (2019) Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview. Journal of Tropical and Subtropical Botany, 27, 500-522. (in Chinese with English abstract) |
[鲁显楷, 莫江明, 张炜, 毛庆功, 刘荣臻, 王聪, 王森浩, 郑棉海, MORI Taiki, 毛晋花, 张勇群, 王玉芳, 黄娟 (2019) 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 27, 500-522.] | |
[20] |
Ma XC, Geng QH, Zhang HG, Bian CY, Chen HYH, Jiang DL, Xu X (2021) Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytologist, 229, 2957-2969.
DOI PMID |
[21] |
Mao JH, Xing YJ, Ma HY, Wang QG (2017) Research progress of nitrogen deposition effect on plant growth. Chinese Agricultural Science Bulletin, 33, 42-48. (in Chinese with English abstract)
DOI |
[毛晋花, 邢亚娟, 马宏宇, 王庆贵 (2017) 氮沉降对植物生长的影响研究进展. 中国农学通报, 33, 42-48.]
DOI |
|
[22] | Silvertown J (2004) Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611. |
[23] | Stevens CJ (2016) How long do ecosystems take to recover from atmospheric nitrogen deposition? Biological Conservation, 200, 160-167. |
[24] | Strengbom J, Nordin A, Näsholm T, Ericson L (2001) Slow recovery of boreal forest ecosystem following decreased nitrogen input. Functional Ecology, 15, 451-457. |
[25] | Sun JW, Wu JB, Ren L, Zhang GH, Ren FP, Yao FQ (2016) Response of photosynthetic physiological characteristics to nitrogen addition by seedlings of two dominant tree species in a broadleaved-Korean pine mixed forest on Changbai Mountain. Acta Ecologica Sinica, 36, 6777-6785. (in Chinese with English abstract) |
[孙金伟, 吴家兵, 任亮, 张冠华, 任斐鹏, 姚付启 (2016) 氮添加对长白山阔叶红松林2种树木幼苗光合生理生态特征的影响. 生态学报, 36, 6777-6785.] | |
[26] | Tian DS, Niu SL (2015) A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. |
[27] | Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology, 75, 2-16. |
[28] | Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Species Diversity in Ecological Communities (eds Ricklefs RE, Schluter D), pp. 13-25. University of Chicago Press, Chicago. |
[29] |
Walter CA, Adams MB, Gilliam FS, Peterjohn WT (2017) Non-random species loss in a forest herbaceous layer following nitrogen addition. Ecology, 98, 2322-2332.
DOI PMID |
[30] | Wang GJ, Lin F, Hu JR, Yuan ZQ, Hao ZQ, Wang XG (2019) Effects of nitrogen and soil microbe on growth and photosynthesis of Fraxinus mandschurica seedlings. Chinese Journal of Applied Ecology, 30, 1445-1462. (in Chinese with English abstract) |
[王国杰, 蔺菲, 胡家瑞, 原作强, 郝占庆, 王绪高 (2019) 氮和土壤微生物对水曲柳幼苗生长和光合作用的影响. 应用生态学报, 30, 1445-1462.]
DOI |
|
[31] | Wang W, Feng YH, Wu RT, Wang XH, He X, Zhang MM, Li K, Jin GZ, Song FQ (2023) Long-term N addition reduced the diversity of arbuscular mycorrhizal fungi and understory herbs of a Korean pine plantation in Northern China. Frontiers in Ecology and Evolution, 11, 1192267. |
[32] |
Wu LK, Lin XM, Lin WX (2014) Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310. (in Chinese with English abstract)
DOI |
[吴林坤, 林向民, 林文雄 (2014) 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
|
[33] | Xia ZW, Yang JY, Sang CP, Wang X, Sun LF, Jiang P, Wang C, Bai E (2020) Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms, 8, 1828. |
[34] | Xu GL, Mo JM, Fu SL, Gundersen P, Zhou GY, Xue JH (2007) Response of soil fauna to simulated nitrogen deposition: A nursery experiment in subtropical China. Journal of Environmental Sciences, 19, 603-609. |
[35] | Xu ZC, Johnson DJ, Zhu K, Lin F, Ye J, Yuan ZQ, Mao ZK, Fang S, Hao ZQ, Wang XG (2022) Interannual climate variability has predominant effects on seedling survival in a temperate forest. Ecology, 103, e3643. |
[36] | Yan GY, Xing YJ, Wang JY, Li ZH, Wang LG, Wang QG, Xu LJ, Zhang Z, Zhang JH, Dong XD, Shan WJ, Guo L, Han SJ (2018) Sequestration of atmospheric CO2 in boreal forest carbon pools in Northeastern China: Effects of nitrogen deposition. Agricultural and Forest Meteorology, 248, 70-81. |
[37] | Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019) Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[38] | Yu MJ, Ye YH, Han YY, Zhang GZ (2021) Research progress on the effects of nitrogen deposition on forest ecosystem. Journal of Anhui Agriculture Science, 49(3), 19-24, 27. (in Chinese with English abstract) |
[于美佳, 叶彦辉, 韩艳英, 张光祖 (2021) 氮沉降对森林生态系统影响的研究进展. 安徽农业科学, 49(3), 19-24, 27.] | |
[39] | Yuan ZQ, Ali A, Ruiz-Benito P, Jucker T, Mori AS, Wang SP, Zhang XK, Li H, Hao ZQ, Wang XG, Loreau M (2020) Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology, 108, 2012-2024. |
[40] | Zhao BY, Jia XQ, Yu N, Murray JD, Yi KK, Wang ER (2024) Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. New Phytologist, 242, 1507-1522. |
[1] | 尚华丹 王梅 李国宏 王鸿斌. 中国杨树害虫物种多样性[J]. 生物多样性, 2025, 33(2): 24370-0. |
[2] | 谭珂 宁瑶 王仁芬 王晴 梁丹萍 辛子兵 温放. 中国苦苣苔科植物多样性与地理分布数据集[J]. 生物多样性, 2025, 33(1): 23275-. |
[3] | 陈自宏, 张翼飞, 陈凯, 徐玲. 高黎贡山南段昆虫病原真菌物种多样性及影响因素[J]. 生物多样性, 2025, 33(1): 24228-. |
[4] | 韩佳楠, 苏杨, 李霏, 刘君妍, 赵依林, 李琳, 赵建成, 梁红柱, 李敏. 河北省苔藓植物多样性[J]. 生物多样性, 2024, 32(9): 24096-. |
[5] | 何欣怡, 潘玉梅, 祝燕, 陈佳仪, 张思榕, 张乃莉. 暖温带森林外生菌根树种优势和植物多样性对土壤氮素周转的影响[J]. 生物多样性, 2024, 32(9): 24173-. |
[6] | 李东红, 郝媛媛, 甘辉林, 张航, 刘耀猛, 他富源, 胡桂馨. 祁连山北麓中段不同类型草地蝗虫种类及分布[J]. 生物多样性, 2024, 32(9): 24119-. |
[7] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[8] | 白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才. 西江流域大型底栖无脊椎动物物种多样性及维持机制[J]. 生物多样性, 2024, 32(7): 23499-. |
[9] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[10] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[11] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[12] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[13] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[14] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[15] | 杜晴晴, 任思远, Nicole Tsz Shun Yuan, 祝燕. 北京东灵山暖温带落叶阔叶林幼树及成树生产力的影响因素[J]. 生物多样性, 2024, 32(12): 24284-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn