生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24230. DOI: 10.17520/biods.2024230 cstr: 32101.14.biods.2024230
王兴煜1,2, 孟京辉1,*(), 任思远3,*(
), 祝燕2,*(
)(
)
收稿日期:
2024-06-11
接受日期:
2024-08-11
出版日期:
2024-12-20
发布日期:
2025-01-24
通讯作者:
E-mail: 基金资助:
Xingyu Wang1,2, Jinghui Meng1,*(), Siyuan Ren3,*(
), Yan Zhu2,*(
)(
)
Received:
2024-06-11
Accepted:
2024-08-11
Online:
2024-12-20
Published:
2025-01-24
Contact:
E-mail: Supported by:
摘要: 森林生物多样性-地上生物量关系在全球物种丧失加剧的背景下备受关注。但目前的研究主要聚焦在单一方面的多样性, 鲜少同时探究物种、功能和结构三个方面的多样性, 生物多样性哪方面更能影响地上生物量变化尚不清楚。本研究基于北京东灵山1 ha次生林样地清查数据, 使用线性回归模型分析了物种多样性、功能多样性、结构多样性和生物因素(林分密度)、非生物因素(地形)与地上生物量的相关性, 并通过结构方程模型综合比较物种、功能和结构多样性对地上生物量影响的相对重要性。结果表明: (1)多元回归结果表明Pielou均匀度指数、比叶面积群落加权平均值、胸径Shannon指数和林分密度对地上生物量有显著正影响, 而功能离散度和海拔对地上生物量有显著负影响。(2)结构方程结果表明, 林分密度和以胸径Shannon指数为主的结构多样性对地上生物量的总效应最大, 其次是海拔、物种多样性(Pielou均匀度指数)、功能多样性(功能离散度和比叶面积群落加权平均值)。研究认为生态位互补和质量比假说共同解释暖温带落叶阔叶林地上生物量, 其中林分密度和胸径Shannon指数导致的生态位互补效应起主导作用。研究结果为解释生物多样性-生态系统功能关系提供了有力支撑, 为暖温带森林的可持续经营和管理提供了理论依据, 具有重要的现实意义。
王兴煜, 孟京辉, 任思远, 祝燕 (2024) 北京东灵山暖温带落叶阔叶林群落生物多样性与地上生物量的关系. 生物多样性, 32, 24230. DOI: 10.17520/biods.2024230.
Xingyu Wang, Jinghui Meng, Siyuan Ren, Yan Zhu (2024) Relationship between biodiversity and aboveground biomass in the warm temperate deciduous broad-leaved forest of Donglingshan, Beijing. Biodiversity Science, 32, 24230. DOI: 10.17520/biods.2024230.
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
凹凸度 Convexity | -26.72至30.55 | 0.06 | 11.78 |
海拔 Elevation (m) | 1,335.97-1,406.54 | 1,380.11 | 18.56 |
林分密度 Stand density | 56-176 | 115.48 | 32.83 |
物种丰富度 Species richness | 6-13 | 9.00 | 2.06 |
Pielou均匀度指数 Pielou evenness index | 0.50-0.93 | 0.75 | 0.10 |
功能丰富度 FRic | 0.11-7.83 | 3.41 | 3.26 |
功能离散度 FDis | 1.38-2.57 | 2.04 | 0.34 |
比叶面积群落加权平均值 CWM.SLA | 200.46-258.34 | 233.11 | 31.84 |
木材密度群落加权平均值 CWM.WD | 0.59-0.69 | 0.63 | 0.03 |
胸径Shannon指数 DBH Shannon index | 0.66-0.69 | 0.68 | 0.01 |
表1 北京东灵山次生林样地内预测变量信息统计表
Table 1 The statistical information of predictor variables in the 1 ha plot of secondary forest in Donglingshan, Beijing
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
凹凸度 Convexity | -26.72至30.55 | 0.06 | 11.78 |
海拔 Elevation (m) | 1,335.97-1,406.54 | 1,380.11 | 18.56 |
林分密度 Stand density | 56-176 | 115.48 | 32.83 |
物种丰富度 Species richness | 6-13 | 9.00 | 2.06 |
Pielou均匀度指数 Pielou evenness index | 0.50-0.93 | 0.75 | 0.10 |
功能丰富度 FRic | 0.11-7.83 | 3.41 | 3.26 |
功能离散度 FDis | 1.38-2.57 | 2.04 | 0.34 |
比叶面积群落加权平均值 CWM.SLA | 200.46-258.34 | 233.11 | 31.84 |
木材密度群落加权平均值 CWM.WD | 0.59-0.69 | 0.63 | 0.03 |
胸径Shannon指数 DBH Shannon index | 0.66-0.69 | 0.68 | 0.01 |
图1 北京东灵山次生林Pielou均匀度指数、功能离散度(FDis)、比叶面积群落加权平均值(CWM.SLA)、胸径Shannon指数、林分密度(Stand.density)、海拔(Elevation)与地上生物量的双变量线性回归关系。实线代表线性回归模型下得到的拟合直线, 灰色区域代表模型95%置信区间。R2表示调整后的拟合系数, P值表示整个模型的显著度。
Fig. 1 Bivariate linear regression relationship between Pielou evenness index, functional dispersion (FDis), community weighted mean trait value of specific leaf area (CWM.SLA), DBH Shannon index, stand density (Stand.density), elevation (Elevation) and aboveground biomass (AGB) in the secondary forest in Donglingshan, Beijing. The solid line represents the fitted straight line obtained under the linear regression model, and the gray area represents the 95% confidence interval of the model. R2 and P are the adjusted R2 and significance of the whole regression model, respectively.
图2 北京东灵山次生林预测变量对地上生物量的相对影响。基于逐步回归分析筛选预测因子纳入模型, 5个维度的预测因子包括: 物种多样性、功能多样性、结构多样性、林分密度、地形。Pielou均匀度指数(Species.evenness)代表物种多样性; 功能离散度(FDis)、比叶面积群落加权平均值(CWM.SLA)代表功能多样性; 胸径Shannon指数(DBH.Shannon.index)代表结构多样性; 林分密度(Stand.density)代表样地林分分布情况; 海拔(Elevation)代表地形。R2是调整后R2。* P < 0.05; **P < 0.01; *** P < 0.001。
Fig. 2 Relative effects of predictors on aboveground biomass of the secondary forest plot in Donglingshan, Beijing. Based on stepwise regression analysis, the predictors were selected for inclusion in the model, and the predictors of five dimensions included: species diversity, functional diversity, structural diversity, stand density, and topography. Pielou evenness index (Species.evenness) represents species diversity, functional dispersion (FDis) and community weighted mean trait value of specific leaf area (CWM.SLA) represent functional diversity; DBH Shannon index (DBH.Shannon.index) represents structural diversity; stand density (Stand.density) represents the distribution of forest stands within the plot; elevation represents topography. The R2 was estimated based on adjusted R2.
图3 生物和非生物因子与地上生物量的结构方程模型。模型考虑了海拔(Elevation)、Pielou均匀度指数(Pielou evenness index)、功能离散度(FDis)、比叶面积群落加权平均值(CWM.SLA)、胸径Shannon指数(DBH Shannon index)和林分密度(Stand density)对地上生物量(AGB)的直接和间接影响。箭头方向表示因果关系, 实线和虚线表示作用强弱, 蓝色表示正相关, 红色表示负相关。线上的数值表示具有相应统计意义的标准化路径系数。模型评价采用比较拟合指数(CFI)、标准化残差均方和平方根(SRMR)。* P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 3 Structural equation models (SEM) of biotic and abiotic factors and aboveground biomass. The model accounting for the direct and indirect effects of elevation, pielou evenness index, functional dispersion (FDis), community weighted mean trait value of specific leaf area (CWM.SLA), DBH Shannon index and stand density on aboveground biomass (AGB). Arrows represent the flow of causality, solid and dashed lines indicate the strength of the effect, blue indicates a positive correlation, and red indicates a negative correlation. Number and its associated asterisks are standardized path coefficient and significant level. The model was evaluated using the comparative fit index (CFI) and the standardized residual mean square root (SRMR). * P < 0.05; ** P < 0.01; *** P < 0.001.
解释变量 Explanatory variable | 对地上生物量的 作用路径 Pathway to productivity | 结构方程模型 SEM | |
---|---|---|---|
影响效应 Impact effect | P | ||
海拔 Elevation | 直接效应 Direct effect | -0.24 | < 0.001 |
间接效应 Indirect effect | -0.26 | < 0.01 | |
总效应 Total effect | -0.50 | < 0.001 | |
林分密度 Stand density | 直接效应 Direct effect | 0.41 | < 0.001 |
间接效应 Indirect effect | -0.19 | < 0.01 | |
总效应 Total effect | 0.22 | < 0.001 | |
Pielou均匀度指数 Pielou evenness index | 直接效应 Direct effect | 0.46 | < 0.001 |
间接效应 Indirect effect | -0.23 | < 0.001 | |
总效应 Total effect | 0.23 | < 0.001 | |
功能离散度 FDis | 直接效应 Direct effect | -0.36 | < 0.001 |
总效应 Total effect | -0.36 | < 0.001 | |
比叶面积群落加权 平均值 CWM.SLA | 直接效应 Direct effect | 0.51 | < 0.001 |
总效应 Total effect | 0.51 | < 0.001 | |
胸径Shannon指数 DBH Shannon index | 直接效应 Direct effect | 0.44 | < 0.001 |
总效应 Total effect | 0.44 | < 0.001 |
表2 结构方程模型中预测变量对森林地上生物量的直接、间接和总标准化影响效应
Table 2 Direct, indirect, and total standardized effects of predictor variables on the aboveground biomass in our structural equation model (SEM). FDis, Functional dispersion; CWM.SLA, Community weighted mean trait value of specific leaf area.
解释变量 Explanatory variable | 对地上生物量的 作用路径 Pathway to productivity | 结构方程模型 SEM | |
---|---|---|---|
影响效应 Impact effect | P | ||
海拔 Elevation | 直接效应 Direct effect | -0.24 | < 0.001 |
间接效应 Indirect effect | -0.26 | < 0.01 | |
总效应 Total effect | -0.50 | < 0.001 | |
林分密度 Stand density | 直接效应 Direct effect | 0.41 | < 0.001 |
间接效应 Indirect effect | -0.19 | < 0.01 | |
总效应 Total effect | 0.22 | < 0.001 | |
Pielou均匀度指数 Pielou evenness index | 直接效应 Direct effect | 0.46 | < 0.001 |
间接效应 Indirect effect | -0.23 | < 0.001 | |
总效应 Total effect | 0.23 | < 0.001 | |
功能离散度 FDis | 直接效应 Direct effect | -0.36 | < 0.001 |
总效应 Total effect | -0.36 | < 0.001 | |
比叶面积群落加权 平均值 CWM.SLA | 直接效应 Direct effect | 0.51 | < 0.001 |
总效应 Total effect | 0.51 | < 0.001 | |
胸径Shannon指数 DBH Shannon index | 直接效应 Direct effect | 0.44 | < 0.001 |
总效应 Total effect | 0.44 | < 0.001 |
[1] | Ali A, Chen HYH, You WH, Yan ER (2019) Multiple abiotic and biotic drivers of aboveground biomass shift with forest stratum. Forest Ecology and Management, 436, 1-10. |
[2] | Ali A, Mattsson E (2019) Wood density is a sustainability indicator for the management of dry zone homegarden agroforests: Evidences from biodiversity-ecosystem function relationships. Ecological Indicators, 105, 474-482. |
[3] | Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13, 4627-4635. |
[4] | Boyden SB, Reich PB, Puettmann KJ, Baker TR (2009) Effects of density and ontogeny on size and growth ranks of three competing tree species. Journal of Ecology, 97, 277-288. |
[5] | Cadotte MW, Tucker CM (2018) Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biological Conservation, 225, 128-133. |
[6] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[7] |
Chang LW, Zelený D, Li CF, Chiu ST, Hsieh CF (2013) Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145-2151.
PMID |
[8] | Chen LZ (1997) The Study on Structure and Function of Forest in Warm Temperate Zone. Science Press, Beijing. (in Chinese) |
[陈灵芝 (1997) 暖温带森林生态系统结构与功能的研究. 科学出版社, 北京.] | |
[9] | Chen XL, Chen HYH, Searle EB, Chen C, Reich PB (2021) Negative to positive shifts in diversity effects on soil nitrogen over time. Nature Sustainability, 4, 225-232. |
[10] |
Chen YX, Wright SJ, Muller-Landau HC, Hubbell SP, Wang YF, Yu SX (2016) Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 97, 776-785.
PMID |
[11] | Chisholm RA, Muller-Landau HC, Rahman KA, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao HL, Cao M, Cárdenas D, Chang LW, Chiang JM, Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunatilleke S, Hao ZQ, Harrison RD, Howe R, Hsieh CF, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian JY, Lin DM, Liu HF, Lutz JA, Ma KP, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Razman SM, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang WG, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S, Ye WH, Yuan ZQ, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101, 1214-1224. |
[12] | Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology & Evolution, 10, 18-22. |
[13] | Condit R (1998) Tropical Forest Census Plots. Springer, Berlin. |
[14] | Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003) Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322. |
[15] |
Dănescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI PMID |
[16] |
Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13, 1030-1040.
DOI PMID |
[17] |
Fahey RT, Fotis AT, Woods KD (2015) Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecological Applications, 25, 834-847.
PMID |
[18] | FAO (Food and Agriculture Organization of the United Nations) (2015) Global Forest Resources Assessment 2015: How are the World’s Forests Changing? https://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/. (accessed on 2024-05-25) |
[19] |
Feng YH, Schmid B, Loreau M, Forrester DI, Fei SL, Zhu JX, Tang ZY, Zhu JL, Hong PB, Ji CJ, Shi Y, Su HJ, Xiong XY, Xiao J, Wang SP, Fang JY (2022) Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 376, 865-868.
DOI PMID |
[20] |
Fichtner A, Härdtle W, Bruelheide H, Kunz M, Li Y, von Oheimb G (2018) Neighbourhood interactions drive overyielding in mixed-species tree communities. Nature Communications, 9, 1144.
DOI PMID |
[21] | Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Velepucha PE, Fernandez F, Licona JC, Lorenzo L, Negret BS, Vaz M, Poorter L (2015) Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201. |
[22] | Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. Forest Ecology and Management, 312, 282-292. |
[23] | Forrester DI, Bauhus J (2016) A review of processes behind diversity-productivity relationships in forests. Current Forestry Reports, 2, 45-61. |
[24] | Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. Forest Ecology and Management, 304, 233-242. |
[25] | Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW, Queenborough SA, Comita LS (2018) Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 106, 561-570. |
[26] | Fox JW (2005) Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecology Letters, 8, 846-856. |
[27] | Fox JW, Monette G (1992) Generalized Collinearity Diagnostics. Journal of the American Statistical Association, 87, 178-183. |
[28] | Franklin JF (1988) Structural and Functional Diversity in Temperate Forests. Biodiversity National Academy Press, Washington, DC. |
[29] | Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long RJ, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang ZH, Stahlmann R, Stotz GC, Sugiyama SI, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305. |
[30] | Gao XM, Wang W, Du XJ, Ma KP (2001) Size structure, ecological significance and population origin of Quercus wutaishanica forest in Beijing mountainous area. Acta Phytoecologica Sinica, 25, 673-678. (in Chinese with English abstract) |
[高贤明, 王巍, 杜晓军, 马克平 (2001) 北京山区辽东栎林的径级结构、种群起源及生态学意义. 植物生态学报, 25, 673-678.] | |
[31] | García-Palacios P, Ashley Shaw E, Wall DH, Hättenschwiler S (2017) Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. Journal of Ecology, 105, 968-978. |
[32] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[33] | Grace JB, Michael Anderson T, Seabloom EW, Borer ET, Adler PB, Stanley Harpole W, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393. |
[34] | Grime JP (1998) Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902-910. |
[35] | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016) Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. (in Chinese with English abstract) |
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先锟 (2016) 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.]
DOI |
|
[36] | Hao MH, Dai Y, Yue QM, Fan CY, Zhang CY (2022) Relationship between functional diversity of broad-leaved Korean pine forest and forest carbon sink function. Journal of Beijing Forestry University, 44(10), 68-76. (in Chinese with English abstract) |
[郝珉辉, 代莹, 岳庆敏, 范春雨, 张春雨 (2022) 阔叶红松林功能多样性与森林碳汇功能关系. 北京林业大学学报, 44(10), 68-76.] | |
[37] | Hao MH, Ganeshaiah KN, Zhang CY, Zhao XH, von Gadow K (2019) Discriminating among forest communities based on taxonomic, phylogenetic and trait distances. Forest Ecology and Management, 440, 40-47. |
[38] | Hao MH, Messier C, Geng Y, Zhang CY, Zhao XH, von Gadow K (2020) Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. European Journal of Forest Research, 139, 959-968. |
[39] |
Hao MH, Zhang CY, Zhao XH, von Gadow K (2018) Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecology and Evolution, 8, 2395-2406.
DOI PMID |
[40] |
Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtis PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818-1827.
PMID |
[41] | Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. |
[42] |
Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510-1520.
PMID |
[43] | Hordijk I, Maynard DS, Hart SP, Mo LD ter Steege H, Liang JJ, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, ……, Wittmann F, Wortel V, Zagt R, Zawila-Niedzwiecki T, Zhang CY, Zhao XH, Zhou M, Zhu ZX, Zo-Bi IC, Crowther TW (2023) Evenness mediates the global relationship between forest productivity and richness. Journal of Ecology, 111, 1308-1326. |
[44] | Hou JH, Huang JH, Ma KP (2004) Eleven-year population growth dynamics of major species in a Quercus liaotungensis forest in the Dongling Mountains, northern China. Acta Phytoecologica Sinica, 28, 609-615. (in Chinese with English abstract) |
[侯继华, 黄建辉, 马克平 (2004) 东灵山辽东栎林主要树种种群11年动态变化. 植物生态学报, 28, 609-615.]
DOI |
|
[45] | Hu YW, Lin SX, Chen BB, Zhao XH, Zhang CY, Kuang WN (2024) Driving factors of understory species diversity in forest on the northeastern Qinghai Province of northwestern China. Journal of Beijing Forestry University, 46(6), 28-37. (in Chinese with English abstract) |
[胡彦雯, 林森炫, 陈贝贝, 赵秀海, 张春雨, 匡文浓 (2024) 青海省东北部森林林下物种多样性的驱动因素. 北京林业大学学报, 46(6), 28-37.] | |
[46] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[47] | Jing X, Muys B, Bruelheide H, Desie E, Hättenschwiler S, Jactel H, Jaroszewicz B, Kardol P, Ratcliffe S, Scherer-Lorenzen M, Selvi F, Vancampenhout K, van der Plas F, Verheyen K, Vesterdal L, Zuo J,Van Meerbeek K (2021) Above- and below-ground complementarity rather than selection drive tree diversity-productivity relationships in European forests. Functional Ecology, 35, 1756-1767. |
[48] | Jucker T, Avăcăriței D, Bărnoaiea I, Duduman G, Bouriaud O, Coomes DA (2016) Climate modulates the effects of tree diversity on forest productivity. Journal of Ecology, 104, 388-398. |
[49] | King AW, Hayes DJ, Huntzinger DN, West TO, Post WM (2012) North American carbon dioxide sources and sinks: Magnitude, attribution, and uncertainty. Frontiers in Ecology and the Environment, 10, 512-519. |
[50] | Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA, 104, 5925-5930. |
[51] |
Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[52] | Lan X, Du H, Song TQ, Zeng FP, Peng WX, Liu YX, Fan ZL, Zhang JY (2019) Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors. Acta Ecologica Sinica, 39, 2043-2053. (in Chinese with English abstract) |
[兰秀, 杜虎, 宋同清, 曾馥平, 彭晚霞, 刘永贤, 范稚莲, 张家涌 (2019) 广西主要森林植被碳储量及其影响因素. 生态学报, 39, 2043-2053.] | |
[53] | LaRue EA, Knott JA, Domke GM, Chen HY, Guo QF, Hisano M, Oswalt C, Oswalt S, Kong N, Potter KM, Fei SL (2023) Structural diversity as a reliable and novel predictor for ecosystem productivity. Frontiers in Ecology and the Environment, 21, 33-39. |
[54] | Lasky JR, Uriarte M, Boukili VK, Chazdon RL (2014) Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, USA, 111, 5616-5621. |
[55] | Lei XD, Wang WF, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39, 1835-1847. |
[56] | Li L, Liu HF, Bai F, Zhu Y, Li GQ, Li WC, Sang WG (2011) Species composition and community structure of four deciduous broad-leaved secondary forest in Dongling Mountain. Biodiversity Science, 19, 243-251. (in Chinese with English abstract) |
[李亮, 刘海丰, 白帆, 祝燕, 李广起, 李文超, 桑卫国 (2011) 东灵山4种落叶阔叶次生林的物种组成与群落结构. 生物多样性, 19, 243-251.]
DOI |
|
[57] | Li YF, Li MH, Ming AG, Wang HX, Yu SF, Ye SM (2021) Spatial pattern dynamics among co-dominant populations in early secondary forests in Southwest China. Journal of Forestry Research, 32, 1373-1384. |
[58] | Liang JJ, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. |
[59] | Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS ONE, 7, e48244. |
[60] | Lines ER, Fischer FJ, Owen HJF, Jucker T (2022) The shape of trees: Reimagining forest ecology in three dimensions with remote sensing. Journal of Ecology, 110, 1730-1745. |
[61] | Liu GF, Wang L, Jiang L, Pan X, Huang ZY, Dong M, Cornelissen JHC (2018) Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology, 106, 218-229. |
[62] | Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martínez-Ramos M, Bongers F (2012) Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 14, 89-96. |
[63] | Lu JY, Wu ZF, Zhang CY, Zhao XH (2021) Influence of forest strate structure on productivity of coniferous and broad- leaved mixed forest in Jiaohe, Jilin. Acta Ecologica Sinica, 41, 2024-2032. (in Chinese with English abstract) |
[鲁君悦, 吴兆飞, 张春雨, 赵秀海 (2021) 吉林蛟河针阔混交林林层结构对生产力的影响. 生态学报, 41, 2024-2032.] | |
[64] | Luo WX, Liang JJ, Gatti RC, Zhao XH, Zhang CY (2019) Parameterization of biodiversity-productivity relationship and its scale dependency using georeferenced tree-level data. Journal of Ecology, 107, 1106-1119. |
[65] | McElhinny C, Gibbons P, Brack C (2006) An objective and quantitative methodology for constructing an index of stand structural complexity. Forest Ecology and Management, 235, 54-71. |
[66] |
McNicol IM, Ryan CM, Dexter KG, Ball SMJ, Williams M (2018) Aboveground carbon storage and its links to stand structure, tree diversity and floristic composition in south-eastern Tanzania. Ecosystems, 21, 740-754.
DOI PMID |
[67] | Morin X (2015) Species richness promotes canopy packing: A promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Functional Ecology, 29, 993-994. |
[68] | Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876. |
[69] |
Naeem S, Emmett DJ, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science, 336, 1401-1406.
DOI PMID |
[70] | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, David MA, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[71] | Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20, 170-180. |
[72] | Pedro MS, Rammer W, Seidl R (2017) Disentangling the effects of compositional and structural diversity on forest productivity. Journal of Vegetation Science, 28, 649-658. |
[73] | Peet PK (1974) The measurement of species diversity. Annual Review of Ecology, Evolution, and Systematics, 5, 285-307. |
[74] |
Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758.
DOI PMID |
[75] | Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817-827. |
[76] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[77] | Rawat M, Arunachalam K, Arunachalam A, Alatalo J, Pandey R (2019) Associations of plant functional diversity with carbon accumulation in a temperate forest ecosystem in the Indian Himalayas. Ecological Indicators, 98, 861-868. |
[78] |
Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia, 167, 181-188.
DOI PMID |
[79] | Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED (2012) Using plant functional traits to explain diversity-productivity relationships. PLoS ONE, 7, e36760. |
[80] | Rosseel Y (2012) lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. |
[81] | Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B 3rd, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172. |
[82] | Sha W, Dong SK, Liu SL, Liu QR, Shi JB, Li XW, Su XK, Wu Y (2016) Spatial patterns of plant community biomass and species diversity in Aerjin Mountain Nature Reserve and their influencing factors. Chinese Journal of Ecology, 35, 330-337. (in Chinese with English abstract) |
[沙威, 董世魁, 刘世梁, 刘全儒, 石建斌, 李晓文, 苏旭坤, 吴娱 (2016) 阿尔金山自然保护区植物群落生物量和物种多样性的空间格局及其影响因素. 生态学杂志, 35, 330-337.] | |
[83] | Tan LZ, Fan CY, Fan XH (2017) Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 41, 1149-1156. (in Chinese with English abstract) |
[谭凌照, 范春雨, 范秀华 (2017) 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 41, 1149-1156.]
DOI |
|
[84] |
Tan SS, Wang RR, Gong XL, Cai JY, Shen GC (2017) Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 25, 1054-1064. (in Chinese with English abstract)
DOI |
[谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春 (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25, 1054-1064.]
DOI |
|
[85] |
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
PMID |
[86] |
Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C (2016) Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 19, 638-647.
DOI PMID |
[87] | Unger M, Leuschner C, Homeier J (2010) Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant and Soil, 336, 443-458. |
[88] | van der Sande MT, Arets EJMM, Peña-Claros M, Hoosbeek MR, Cáceres-Siani Y, van der Hout P, Poorter L (2018) Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 32, 461-474. |
[89] |
Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI PMID |
[90] | Wan XH, Joly FX, Jia H, Zhu M, Fu YR, Huang ZQ (2023) Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. New Phytologist, 240, 1003-1014. |
[91] |
Wang H, Zhang MT, Nan HW (2019) Abiotic and biotic drivers of species diversity in understory layers of cold temperate coniferous forests in North China. Journal of Forestry Research, 30, 2213-2225.
DOI |
[92] | Wang WF, Lei XD, Ma ZH, Kneeshaw DD, Peng CH (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57, 506-515. |
[93] |
Williamson GB, Wiemann MC (2010) Measuring wood specific gravity…Correctly. American Journal of Botany, 97, 519-524.
DOI PMID |
[94] | Wu XP, Wang ZH, Cui HT, Fang JY (2004) Community structures and species composition of oak forests in mountainous area of Beijing. Biodiversity Science, 12, 155-162. (in Chinese with English abstract) |
[吴晓莆, 王志恒, 崔海亭, 方精云 (2004) 北京山区栎林的群落结构与物种组成. 生物多样性, 12, 155-162.]
DOI |
|
[95] |
Xu SW, Su HX, Ren SY, Hou JH, Zhu Y (2023) Functional traits and habitat heterogeneity explain tree growth in a warm temperate forest. Oecologia, 203, 371-381.
DOI PMID |
[96] | Yang H, Lou AR, Gao YJ, Song HT (2007) Life history characteristics and spatial distribution of the Betula platyphylla population in the Dongling Mountain region, Beijing, China. Journal of Plant Ecology, 31, 272-282. (in Chinese with English abstract) |
[杨慧, 娄安如, 高益军, 宋宏涛 (2007) 北京东灵山地区白桦种群生活史特征与空间分布格局. 植物生态学报, 31, 272-282.]
DOI |
|
[97] | Yuan ZQ, Ali A, Wang SP, Gazol A, Freckleton R, Wang XG, Lin F, Ye J, Zhou L, Hao ZQ, Loreau M (2018) Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 630, 422-431. |
[98] | Zhang CY, He FL, Zhang ZH, Zhao XH, von Gadow K (2020) Latitudinal gradients and ecological drivers of β-diversity vary across spatial scales in a temperate forest region. Global Ecology and Biogeography, 29, 1257-1264. |
[99] | Zhang T, Niinemets Ü, Sheffield J, Lichstein JW (2018) Shifts in tree functional composition amplify the response of forest biomass to climate. Nature, 556, 99-102. |
[100] | Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252. |
[101] | Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 100, 742-749. |
[102] | Zhang Y, Chen HYH, Taylor AR (2017) Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Functional Ecology, 31, 419-426. |
[103] | Zhang YX, Ma KM, Qi J, Feng Y, Zhang JY (2009) Size structure and spatial pattern of Quercus liaotungensis population along elevation gradient in Dongling Mountain, Beijing. Acta Ecologica Sinica, 29, 2789-2796. (in Chinese with English abstract) |
[张育新, 马克明, 祁建, 冯云, 张洁瑜 (2009) 北京东灵山海拔梯度上辽东栎种群结构和空间分布. 生态学报, 29, 2789-2796.] | |
[104] |
Zhu Y, Bai F, Liu HF, Li WC, Li L, Li GQ, Wang SZ, Sang WG (2011) Population distribution patterns and interspecific spatial associations in warm temperate secondary forests, Beijing. Biodiversity Science, 19, 252-259. (in Chinese with English abstract)
DOI |
[祝燕, 白帆, 刘海丰, 李文超, 李亮, 李广起, 王顺忠, 桑卫国 (2011) 北京暖温带次生林种群分布格局与种间空间关联性. 生物多样性, 19, 252-259.]
DOI |
[1] | 仝淼, 王欢, 张文双, 王超, 宋建潇. 重金属污染土壤中细菌抗生素抗性基因分布特征[J]. 生物多样性, 2025, 33(2): 24101-. |
[2] | 尚华丹 王梅 李国宏 王鸿斌. 中国杨树害虫物种多样性[J]. 生物多样性, 2025, 33(2): 24370-0. |
[3] | 谭珂 宁瑶 王仁芬 王晴 梁丹萍 辛子兵 温放. 中国苦苣苔科植物多样性与地理分布数据集[J]. 生物多样性, 2025, 33(1): 23275-. |
[4] | 陈自宏, 张翼飞, 陈凯, 徐玲. 高黎贡山南段昆虫病原真菌物种多样性及影响因素[J]. 生物多样性, 2025, 33(1): 24228-. |
[5] | 韩佳楠, 苏杨, 李霏, 刘君妍, 赵依林, 李琳, 赵建成, 梁红柱, 李敏. 河北省苔藓植物多样性[J]. 生物多样性, 2024, 32(9): 24096-. |
[6] | 魏诗雨, 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰. 秦岭火地塘针叶林土壤细菌群落的海拔分布格局[J]. 生物多样性, 2024, 32(9): 24180-. |
[7] | 李东红, 郝媛媛, 甘辉林, 张航, 刘耀猛, 他富源, 胡桂馨. 祁连山北麓中段不同类型草地蝗虫种类及分布[J]. 生物多样性, 2024, 32(9): 24119-. |
[8] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[9] | 时永强, 栾青杉, 单秀娟, 韦超, 赵永松, 孙策策, 金显仕. 长岛南部海域浮游动物多样性周年变化[J]. 生物多样性, 2024, 32(7): 23428-. |
[10] | 白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才. 西江流域大型底栖无脊椎动物物种多样性及维持机制[J]. 生物多样性, 2024, 32(7): 23499-. |
[11] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[12] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[13] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[14] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[15] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn