生物多样性 ›› 2024, Vol. 32 ›› Issue (10): 24233. DOI: 10.17520/biods.2024233 cstr: 32101.14.biods.2024233
刘莹莹1(), 龚立新1, 曾皓1, 冯江1,2(
), 董永军3, 王磊4, 江廷磊1,*(
)(
)
收稿日期:
2024-06-12
接受日期:
2024-09-02
出版日期:
2024-10-20
发布日期:
2024-12-05
通讯作者:
*E-mail: jiangtl730@nenu.edu.cn
基金资助:
Yingying Liu1(), Lixin Gong1, Hao Zeng1, Jiang Feng1,2(
), Yongjun Dong3, Lei Wang4, Tinglei Jiang1,*(
)(
)
Received:
2024-06-12
Accepted:
2024-09-02
Online:
2024-10-20
Published:
2024-12-05
Contact:
*E-mail: jiangtl730@nenu.edu.cn
Supported by:
摘要:
被动声学监测(passive acoustic monitoring, PAM)技术因其非侵入性和连续监测的能力, 在野生动物研究中的意义日渐突出。翼手目动物, 俗称蝙蝠, 以其独特的回声定位能力、夜行性及对环境变化的高敏感性, 已成为基于PAM进行生物多样性和环境监测的关键类群。本综述旨在全面阐述被动声学监测技术在蝙蝠研究中的应用, 并分析了被动声学监测的优势和局限性, 总结了文献中关于如何有效地收集和处理声学数据以监测和研究蝙蝠的多样性、活动模式、种群动态、生境选择和分布等方法。最后, 通过文献中的案例研究比较了不同环境因素对蝙蝠多样性和活动的影响, 并讨论了这些环境变量如何影响数据的收集。此外, 本文评估了PAM技术在实际应用中的挑战, 探讨了PAM技术的发展前景及其在生物多样性保护中的潜在贡献, 并提出了包括技术创新、公民科学参与和监测策略优化等未来研究方向的建议, 以推动PAM技术在蝙蝠保护和管理中的进一步应用, 有助于进一步保护生物多样性, 促进生态文明建设。
刘莹莹, 龚立新, 曾皓, 冯江, 董永军, 王磊, 江廷磊 (2024) 被动声学监测在蝙蝠研究中的应用. 生物多样性, 32, 24233. DOI: 10.17520/biods.2024233.
Yingying Liu, Lixin Gong, Hao Zeng, Jiang Feng, Yongjun Dong, Lei Wang, Tinglei Jiang (2024) Application of passive acoustic monitoring in Chiropteran research. Biodiversity Science, 32, 24233. DOI: 10.17520/biods.2024233.
[1] | Adams MD, Law BS, Gibson MS (2010) Reliable automation of bat call identification for eastern new South Wales, Australia, using classification trees and AnaScheme software. Acta Chiropterologica, 12, 231-245. |
[2] | Andreassen T, Surlykke A, Hallam J (2014) Semi-automatic long-term acoustic surveying: A case study with bats. Ecological Informatics, 21, 13-24. |
[3] | Brooks RT (2009) Habitat-associated and temporal patterns of bat activity in a diverse forest landscape of southern New England, USA. Biodiversity and Conservation, 18, 529-545. |
[4] |
Dzal Y, McGuire LP, Veselka N, Fenton MB (2011) Going, going, gone: The impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biology Letters, 7, 392-394.
DOI PMID |
[5] | Hending D, Drew H, Holderied MW (2021) Habitat use of constant frequency echolocating bats in north-west Madagascar with acoustic evidence for a possible new species. Acta Chiropterologica, 23, 153-164. |
[6] | Hill AP, Prince P, Piña Covarrubias E, Doncaster CP, Snaddon JL, Rogers A (2018) AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9, 1199-1211. |
[7] | Jiang TL, Guo X, Lin AQ, Wu H, Sun CN, Feng J, Kanwal JS (2019) Bats increase vocal amplitude and decrease vocal complexity to mitigate noise interference during social communication. Animal Cognition, 22, 199-212. |
[8] |
Jiang TL, Zhao HB, He B, Zhang LB, Luo JH, Liu Y, Sun KP, Yu WH, Wu Y, Feng J (2020) Research progress of bat biology and conservation strategies in China. Acta Theriologica Sinica, 40, 539-559. (in Chinese with English abstract)
DOI |
[江廷磊, 赵华斌, 何彪, 张礼标, 罗金红, 刘颖, 孙克萍, 余文华, 吴毅, 冯江 (2020) 中国蝙蝠生物学研究进展及其保护对策. 兽类学报, 40, 539-559.] | |
[9] | Jones KE, Russ JA, Bashta AT, Bilhari Z, Catto C, Csősz I, Gorbachev A, Győrfi P, Hughes A, Ivashkiv I, Koryagina N, Kurali A, Langton S, Collen, Margiean G, Pandourski I, Parsons S, Prokofev I, Szodoray-Paradi A, Szodoray-Paradi F, Tilova E, Walters CL, Weatherill A, Zavarzin O (2013) Indicator bats program:A system for the global acoustic monitoring of bats. In: Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action, 1st edn. (eds Ben C, Nathalie P, Jonathan EMB, Sarah MD), pp. 211-247. John Wiley & Sons, Hoboken, USA. |
[10] | Khalighifar A, Gotthold BS, Adams E, Barnett J, Beard LO, Britzke ER, Burger PA, Chase K, Cordes Z, Cryan PM, Ferrall E, Fill CT, Gibson SE, Haulton GS, Irvine KM, Katz LS, Kendall WL, Long CA, Mac Aodha O, McBurney T, McCarthy S, McKown MW, O’Keefe J, Patterson LD, Pitcher KA, Rustand M, Segers JL, Seppanen K, Siemers JL, Stratton C, Straw BR, Weller TJ, Reichert BE (2022) NABat ML: Utilizing deep learning to enable crowdsourced development of automated, scalable solutions for documenting North American bat populations. Journal of Applied Ecology, 59, 2849-2862. |
[11] | Kloepper LN, Linnenschmidt M, Blowers Z, Branstetter B, Ralston J, Simmons JA (2016) Estimating colony sizes of emerging bats using acoustic recordings. Royal Society Open Science, 3, 160022. |
[12] | Kobayashi K, Masuda K, Haga C, Matsui T, Dai FK, Machimura T (2021) Development of a species identification system of Japanese bats from echolocation calls using convolutional neural networks. Ecological Informatics, 62, 101253. |
[13] | Larson D, Hayes J (2000) Variability in sensitivity of AnaBat II bat detectors and a method of calibration. Acta Chiropterologica, 2, 209-213. |
[14] | Liu YY, Geng Y, Huang ZLY, Feng J, Jiang TL (2024) Pest suppression services and dietary niche differentiation of bats in Chinese smallholder farming systems: Implications for integrated pest management. Journal of Pest Science, 97, 1587-1603. |
[15] |
Ma HG, Fan PL (2023) Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research. Biodiversity Science, 31, 22374. (in Chinese with English abstract)
DOI |
[马海港, 范鹏来 (2023) 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望. 生物多样性, 31, 22374.]
DOI |
|
[16] | Michez A, Broset S, Lejeune P (2021) Ears in the sky: Potential of drones for the bioacoustic monitoring of birds and bats. Drones, 5, 9. |
[17] | Murray K, Britzke E, Hadley B, Robbinsi LW (1999) Surveying bat communities: A comparison between mist nets and the AnaBat II bat detector system. Acta Chiropterologica, 1, 105-112. |
[18] | Newson SE, Evans HE, Gillings S (2015) A novel citizen science approach for large-scale standardised monitoring of bat activity and distribution, evaluated in eastern England. Biological Conservation, 191, 38-49. |
[19] | Perks SJ, Goodenough AE (2021) Comparing acoustic survey data for European bats: Do walked transects or automated fixed-point surveys provide more robust data? Wildlife Research, 49, 314-323. |
[20] |
Racey PA (2011) Ecological and behavioral methods for the study of bats. Zoological Journal of the Linnean Society, 162, 243.
DOI |
[21] | Ramírez-fráncel LA, García-herrera LV, Losada-prado S, Reinoso-flórez G, Sánchez-hernández A, Estrada-villegas S, Lim BK, Guevara G (2022) Bats and their vital ecosystem services: A global review. Integrative Zoology, 17, 2-23. |
[22] | Rekdahl M, Tisch C, Cerchio S, Rosenbaum H (2017) Common nonsong social calls of humpback whales (Megaptera novaeangliae) recorded off northern Angola, southern Africa. Marine Mammal Science, 33, 365-375. |
[23] |
Revilla-Martín N, Budinski I, Puig-Montserrat X, Flaquer C, López-Baucells A (2021) Monitoring cave-dwelling bats using remote passive acoustic detectors: A new approach for cave monitoring. Bioacoustics, 30, 527-542.
DOI |
[24] | Roche N, Langton S, Aughney T, Russ JM, Marnell F, Lynn D, Catto C (2011) A car-based monitoring method reveals new information on bat populations and distributions in Ireland. Animal Conservation, 14, 642-651. |
[25] | Runkel V, Gerding G, Marckmann U (2021) The Handbook of Acoustic Bat Detection. Pelagic Publishing Ltd., London. |
[26] | Russo D, Voigt CC (2016) The use of automated identification of bat echolocation calls in acoustic monitoring: A cautionary note for a sound analysis. Ecological Indicators, 66, 598-602. |
[27] | Scanlon AT, Petit S (2008) Effects of site, time, weather and light on urban bat activity and richness: Considerations for survey effort. Wildlife Research, 35, 821-834. |
[28] |
Scherrer D, Christe P, Guisan A (2019) Modelling bat distributions and diversity in a mountain landscape using focal predictors in ensemble of small models. Diversity and Distributions, 25, 770-782.
DOI |
[29] | Skowronski MD, Fenton MB (2009) Detecting bat calls: An analysis of automated methods. Acta Chiropterologica, 11, 191-203. |
[30] | Specht R (2002) Avisoft-saslab Pro: Sound Analysis and Synthesis Laboratory. Avisoft Bioacoustics, Berlin. |
[31] | Stahlschmidt P, Brühl CA (2012) Bats as bioindicators—The need of a standardized method for acoustic bat activity surveys. Methods in Ecology and Evolution, 3, 503-508. |
[32] | Starbuck CA, DeSchepper LM, Hoggatt ML, O’Keefe JM (2024) Tradeoffs in sound quality and cost for passive acoustic devices. Bioacoustics, 33, 58-73. |
[33] | Sun CN, Jiang TL, Gu H, Guo X, Zhang CM, Gong LX, Shi BY, Feng J (2020) Geographical variation of social calls and vocal discrimination in male Himalayan leaf-nosed bats. Animal Behaviour, 170, 15-26. |
[34] | Sun CN, Jiang TL, Kanwal JS, Guo X, Luo B, Lin AQ, Feng J (2018) Great Himalayan leaf-nosed bats modify vocalizations to communicate threat escalation during agonistic interactions. Behavioural Processes, 157, 180-187. |
[35] | Walters CL, Freeman R, Collen A, Dietz C, Brock Fenton M, Jones G, Obrist MK, Puechmaille SJ, Sattler T, Siemers BM, Parsons S, Jones KE (2012) A continental-scale tool for acoustic identification of European bats. Journal of Applied Ecology, 49, 1064-1074. |
[36] | WWF (2020) Living Planet Report 2020—Bending the Curve of Biodiversity Loss. WWF, Gland, Switzerland. |
[37] | Zamora-Gutierrez V, Lopez-Gonzalez C, MacSwiney Gonzalez MC, Fenton B, Jones G, Kalko EKV, Puechmaille SJ, Stathopoulos V, Jones KE (2016) Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design. Methods in Ecology and Evolution, 7, 1082-1091. |
[38] | Zhang CM, Zheng ZQ, Lucas JR, Feng J, Sun CN, Jiang TL (2024) Geographic variation and discrimination of social calls in male great Himalayan leaf-nosed bats: Do functionally similar calls have similar patterns? Behavioral Ecology and Sociobiology, 78, 44. |
[39] |
Zhao Y, Shen XL, Li S, Zhang YY, Peng RH, Ma KP (2020) Progress and outlook for soundscape ecology. Biodiversity Science, 28, 806-820. (in Chinese with English abstract)
DOI |
[赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平 (2020) 声景生态学研究进展和展望. 生物多样性, 28, 806-820.]
DOI |
|
[40] | Zhu D, Liu YY, Gong LX, Si M, Wang QY, Feng J, Jiang TL (2024) The consumption and diversity variation responses of agricultural pests and their dietary niche differentiation in insectivorous bats. Animals, 14, 815. |
[1] | 耿江天, 王菲, 赵华斌. 城市化对中国蝙蝠影响的研究进展[J]. 生物多样性, 2024, 32(8): 24109-. |
[2] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[3] | 白皓天, 余上, 潘新园, 凌嘉乐, 吴娟, 谢恺琪, 刘阳, 陈学业. AI辅助识别的鸟类被动声学监测在城市湿地公园中的应用[J]. 生物多样性, 2024, 32(8): 24188-. |
[4] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[5] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[6] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[7] | 陈越, 毛子昆, 王绪高. 基于生态独特性的β多样性研究进展与未来展望[J]. 生物多样性, 2024, 32(12): 24199-. |
[8] | 郝泽周, 张承云, 李乐, 高丙涛, 曾伟, 王淳, 王梓炫, 黄万涛, 张悦, 裴男才, 肖治术. 城市鸟类多样性被动声学监测与评价技术应用[J]. 生物多样性, 2024, 32(10): 24123-. |
[9] | 李乐, 张承云, 裴男才, 高丙涛, 王娜, 李嘉睿, 武瑞琛, 郝泽周. 基于被动声学监测技术的城市绿地景观格局与鸟类多样性关联分析[J]. 生物多样性, 2024, 32(10): 24296-. |
[10] | 张梓欣, 张承云, 郝泽周, 何凯莹, 黄泳桥, 肖治术. 陆地生物声学数据采集设备的进展及展望[J]. 生物多样性, 2024, 32(10): 24265-. |
[11] | 黄万涛, 郝泽周, 张梓欣, 肖治术, 张承云. 被动声学监测设备性能比较及对鸟声识别的影响[J]. 生物多样性, 2024, 32(10): 24273-. |
[12] | 陈蕾, 许志勇, 苏菩坤, 赖小甜, 赵兆. 依频声学多样性指数用于人类活动区域的适用能力[J]. 生物多样性, 2024, 32(10): 24286-. |
[13] | 郭倩茸, 段淑斐, 谢捷, 董雪燕, 肖治术. 鸟声标注技术及其在被动声学监测中的应用[J]. 生物多样性, 2024, 32(10): 24313-. |
[14] | 谢将剑, 沈忱, 张飞宇, 肖治术. 融合音频及生态位信息的跨地域鸟类物种识别方法[J]. 生物多样性, 2024, 32(10): 24259-. |
[15] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn