生物多样性 ›› 2022, Vol. 30 ›› Issue (10): 22530. DOI: 10.17520/biods.2022530
任淯1,2, 陶胜利2, 胡天宇3,4, 杨海涛1, 关宏灿1,2, 苏艳军3,4, 程凯1,2, 陈梦玺1, 万华伟5, 郭庆华1,2,*()
收稿日期:
2022-09-15
接受日期:
2022-11-07
出版日期:
2022-10-20
发布日期:
2022-11-11
通讯作者:
郭庆华
作者简介:
* E-mail: guo.qinghua@pku.edu.cn基金资助:
Yu Ren1,2, Shengli Tao2, Tianyu Hu3,4, Haitao Yang1, Hongcan Guan1,2, Yanjun Su3,4, Kai Cheng1,2, Mengxi Chen1, Huawei Wan5, Qinghua Guo1,2,*()
Received:
2022-09-15
Accepted:
2022-11-07
Online:
2022-10-20
Published:
2022-11-11
Contact:
Qinghua Guo
摘要:
生物多样性的稳定维持关乎人类生存发展与地球健康。生物多样性核心监测指标(Essential Biodiversity Variables, EBVs)旨在结合地面调查与遥感技术, 为大尺度、长时间序列的生物多样性监测提供新的解决方案。然而, 目前学界仍然缺乏一套国家尺度标准化EBVs遥感监测产品数据集, 以进行生物多样性评估。本研究旨在对中国生物多样性核心监测指标遥感产品进行体系构建与思考, 首先综述了目前EBVs的遥感研究概况, 并根据EBVs研究文献的数量进行调研分析; 同时, 本文在已有遥感生物多样性产品优先标准的基础上, 添加了“可重复性”的新标准, 并据此构建了中国EBVs遥感产品体系与监测数据集的指标清单, 最终对中国EBVs遥感研究存在的问题进行思考与讨论。本研究可为中国的生物多样性遥感监测提供科学依据, 有望为中国生物多样性政策的制定提供支撑。
任淯, 陶胜利, 胡天宇, 杨海涛, 关宏灿, 苏艳军, 程凯, 陈梦玺, 万华伟, 郭庆华 (2022) 中国生物多样性核心监测指标遥感产品体系构建与思考. 生物多样性, 30, 22530. DOI: 10.17520/biods.2022530.
Yu Ren, Shengli Tao, Tianyu Hu, Haitao Yang, Hongcan Guan, Yanjun Su, Kai Cheng, Mengxi Chen, Huawei Wan, Qinghua Guo (2022) The outlook and system construction for monitoring Essential Biodiversity Variables based on remote sensing: The case of China. Biodiversity Science, 30, 22530. DOI: 10.17520/biods.2022530.
图1 EBVs子类与《生物多样性公约》爱知目标及可持续发展目标的关系
Fig. 1 The relationship of Essential Biodiversity Variables (EBVs) names to Aichi Biodiversity Targets and the United Nations Sustainable Development Goals (SDGs)
图2 基于文献汇总的生物多样性核心监测指标(EBVs)遥感研究发展情况
Fig. 2 The overview of the publications on Essential Biodiversity Variables (EBVs) field and remote sensing research within EBVs
图3 中国生物多样性核心监测指标(EBVs)子类遥感研究文章数量占比情况
Fig. 3 The proportion of the publications from China in the field of Essential Biodiversity Variables (EBVs) names
序号 Number | 优先原则 Prioritization criteria | 描述 Description |
---|---|---|
1 | 关联性 Relevance | 遥感生物多样性产品的使用目的与方法决定了关联性的强弱。主要关注以下方面与遥感生物多样性产品的相关性: (1)管理问题; (2)为CBD目标提供信息; (3)为SDGs提供信息; (4)为生物多样性和生态系统服务政府间科学政策平台(IPBES)的风险评估过程提供数据。It is known who wants the remote sensing biodiversity product, what they will do with it and how it will be used. The remote sensing biodiversity product is relevant: (1) for management questions; (2) to inform the CBD targets; (3) to inform the SDGs; and (4) to provide data for the IPBES risk assessment processes. |
2 | 可行性 Feasibility | 可行性这一标准考虑了遥感数据的可用性、获取数据的便利性、遥感在时空尺度的完整性以及数据整合与分析的便利性和经济性。This criterion considers the availability of remote sensing data, the ease of access to such data, the completeness of remote sensing in space and time and the ease and affordability of data integration and analysis. |
3 | 准确性(遥感状态) Accuracy (remote sensing status) | 准确性是指衡量某一遥感生物多样性产品观测准确性的标准, 该标准考虑了遥感数据以及获取精准遥感生物多样性产品技术的有效性。A measure of the current activity for the accurate observation of a given remote sensing biodiversity product. This criterion considers the effectiveness of remote sensing data and techniques to achieve an accurate and precise value of the remote sensing-enabled biodiversity product. |
4 | 成熟度(遥感状态) Maturity (remote sensing status) | 成熟度这项标准指的是目前遥感生物多样性产品是否成熟且其程度如何, 即有能力生产遥感生物多样性产品的组织/机构是否可以向资助机构提出产品生产建议, 以及该项任务完成的难度如何。Maturity refers to the maturity and status of the current remote sensing biodiversity products. Institutions/organizations with hopes to generate remote sensing biodiversity products can be identified and/or proposed to a funding body. |
5 | 可重复性(新添加) Repeatability (new addition) | 可重复性主要描述某一遥感生物多样性产品在未来预期能够按照一定时间分辨率获取的能力, 即评判能否按照预期规律性获取遥感生物多样性产品及该需求的难度。Repeatability mainly describes the ability of a certain remotely sensed biodiversity product to be expected to be accessible at a certain temporal resolution in the future, i.e., it judges whether the remotely sensed biodiversity product can be accessed with the expected regularity and the difficulty of that demand. |
表1 遥感生物多样性产品的优先排序标准更新(修改自Skidmore等(2021))
Table 1 Updated remote sensing biodiversity product prioritization criteria (revised from Skidmore et al (2021))
序号 Number | 优先原则 Prioritization criteria | 描述 Description |
---|---|---|
1 | 关联性 Relevance | 遥感生物多样性产品的使用目的与方法决定了关联性的强弱。主要关注以下方面与遥感生物多样性产品的相关性: (1)管理问题; (2)为CBD目标提供信息; (3)为SDGs提供信息; (4)为生物多样性和生态系统服务政府间科学政策平台(IPBES)的风险评估过程提供数据。It is known who wants the remote sensing biodiversity product, what they will do with it and how it will be used. The remote sensing biodiversity product is relevant: (1) for management questions; (2) to inform the CBD targets; (3) to inform the SDGs; and (4) to provide data for the IPBES risk assessment processes. |
2 | 可行性 Feasibility | 可行性这一标准考虑了遥感数据的可用性、获取数据的便利性、遥感在时空尺度的完整性以及数据整合与分析的便利性和经济性。This criterion considers the availability of remote sensing data, the ease of access to such data, the completeness of remote sensing in space and time and the ease and affordability of data integration and analysis. |
3 | 准确性(遥感状态) Accuracy (remote sensing status) | 准确性是指衡量某一遥感生物多样性产品观测准确性的标准, 该标准考虑了遥感数据以及获取精准遥感生物多样性产品技术的有效性。A measure of the current activity for the accurate observation of a given remote sensing biodiversity product. This criterion considers the effectiveness of remote sensing data and techniques to achieve an accurate and precise value of the remote sensing-enabled biodiversity product. |
4 | 成熟度(遥感状态) Maturity (remote sensing status) | 成熟度这项标准指的是目前遥感生物多样性产品是否成熟且其程度如何, 即有能力生产遥感生物多样性产品的组织/机构是否可以向资助机构提出产品生产建议, 以及该项任务完成的难度如何。Maturity refers to the maturity and status of the current remote sensing biodiversity products. Institutions/organizations with hopes to generate remote sensing biodiversity products can be identified and/or proposed to a funding body. |
5 | 可重复性(新添加) Repeatability (new addition) | 可重复性主要描述某一遥感生物多样性产品在未来预期能够按照一定时间分辨率获取的能力, 即评判能否按照预期规律性获取遥感生物多样性产品及该需求的难度。Repeatability mainly describes the ability of a certain remotely sensed biodiversity product to be expected to be accessible at a certain temporal resolution in the future, i.e., it judges whether the remotely sensed biodiversity product can be accessed with the expected regularity and the difficulty of that demand. |
遥感产品 Remote sensing product | 数据名称 Data name | 卫星平台 Satellite platform | 获取时间 Acquire time | 时间分辨率 Time resolution | 空间分辨率/比例尺 Spatial resolution /Scale | 可重 复性 Repeata- bility | 下载链接 Download link | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
生态系统功能 Ecosystem functioning | |||||||||||||||
叶面积指数 LAI | MCD15A3H v006 | MODIS | 2000-present | 4 d | 500 m | 1 | https://lpdaac.usgs.gov/products/mcd15a3hv006/ | ||||||||
CGLS-LAI300 | Sentinel-3/ PROBA-V | 2014-present | 10 d | 300 m | https://land.copernicus.eu/global/products/lai | ||||||||||
GLASS-LAI | AVHRR | 1981-2018 | 8 d | 0.05° | 1 | http://www.glass.umd.edu/ | |||||||||
光合有效辐射分量 FAPAR | MCD15A3H v061 | MODIS | 2002-present | 8 d | 500 m | https://lpdaac.usgs.gov/products/mcd15a2hv061/ | |||||||||
CGLS-FAPAR300 | Sentinel-3/ PROBA-V | 2014-present | 10 d | 300 m | https://land.copernicus.eu/global/products/fapar | ||||||||||
GLASS-FAPAR | AVHRR | 1981-2018 | 8 d | 0.05° | http://www.glass.umd.edu/ | ||||||||||
蒸散 ET | MOD16A2 v006 | MODIS | 2001-present | 8 d | 500 m | 1 | https://lpdaac.usgs.gov/products/mod16a2v006/ | ||||||||
GLASS-ET | MODIS | 2000-2018 | 8 d | 1 km, 0.05° | 1 | http://www.glass.umd.edu/Download.html | |||||||||
净初级生产力 NPP | MOD17A3Hv006 | MODIS | 2001-present | Yearly | 500 m | https://lpdaac.usgs.gov/products/mod17a3hv006/ | |||||||||
总初级生产力 GPP | MOD17A2HGF v061 | MODIS | 2000-present | 8 d | 1 km | 1 | https://lpdaac.usgs.gov/products/mod17a2hgfv061/ | ||||||||
NIRv-GPP | AVHRR | 1982-2018 | Monthly | 0.05° | https://doi.org/10.12199/nesdc.ecodb.2016YFA0600200.02.002 | ||||||||||
GLASS-GPP | MODIS | 2000-2020 2000-2020 | 8 d | 500 m, 0.05° | http://www.glass.umd.edu/ | ||||||||||
叶绿素荧光 SIF | OCO2_L2_Lite_SIF 10r | OCO-2 | 2014-2022 | 16 d | 2.25 km | 1 | https://disc.gsfc.nasa.gov/datasets?keywords=OCO2%20SIF&page=1 | ||||||||
OCO2_L2_Lite_SIF 11r | OCO-2 | 2019-2022 | 16 d | 2.25 km | https://disc.gsfc.nasa.gov/datasets?keywords=OCO2%20SIF&page=1 | ||||||||||
OCO3_L2_Lite_SIF 10r | ISS OCO-3 | 2019-2022 | 16 d | 2.25 km | https://disc.gsfc.nasa.gov/datasets?keywords=OCO2%20SIF&page=1 | ||||||||||
Tansat-SIF | TanSat | 2017-2019 | Daily | 2 km | http://www.geodata.cn/data/datadetails.html?dataguid=3695497&docId=10126 | ||||||||||
叶绿素含量 Chlorophyll content | Chlleaf | ENVISAT- MERIS | 2011 | 7 d | 300 m | 2 | https://doi.org/10.1016/j.rse.2019.111479 | ||||||||
物候 Phenology | MCD12Q2 v006 | MODIS | 2001-2019 | Yearly | 500 m | 1.5 | https://lpdaac.usgs.gov/products/mcd12q2v006/ | ||||||||
叶片性状 Leaf traits | 叶片磷含量 LPC 比叶面积 LA 叶片干物质含量 LDMC | Global trait maps | 2015 | - | - | 1 km, 3 km | 2.5 | https://www.try-db.org/TryWeb/Data.php#59 | |||||||
生物量 Biomass | China forest Aboveground Biomass (AGB) map | ICESat/ GLAS, MODIS | 2004 | - | 1 km | 2 | http://www.3decology.org/dataset-software/ | ||||||||
Global Aboveground Biomass (AGB) Map (version: V02) | MODIS/ GLAS | 2005 | - | 1 km | http://www.glass.umd.edu/ | ||||||||||
遥感产品 Remote sensing product | 数据名称 Data name | 卫星平台 Satellite platform | 获取时间 Acquire time | 时间分辨率 Time resolution | 空间分辨率/比例尺 Spatial resolution /Scale | 可重 复性 Repeata- bility | 下载链接 Download link | ||||||||
生态系统结构 Ecosystem structure | |||||||||||||||
植被连续覆盖/全球森林覆盖变化 VCF/GFCC | Global 2010 Tree Cover (30 m) | Landsat | 2010 | - | 30 m | 2 | https://glad.umd.edu/dataset/global-2010-tree-cover-30-m | ||||||||
土地覆盖 LC | MCD12Q1 v006 | MODIS | 2001-2020 | Yearly | 500 m | 1.5 | https://lpdaac.usgs.gov/products/mcd12q1v006/ | ||||||||
GlobeLand30 | Landsat | 2000, 2010, 2020 | - | 30 m | http://www.globallandcover.com/ | ||||||||||
FROM_GLC30 | Landsat | 2010, 2015, 2017 | - | 30 m | http://data.ess.tsinghua.edu.cn/ | ||||||||||
GLC_FCS30 | Landsat | 1985-2020 | Every 5 years | 30 m | https://data.casearth.cn/thematic/glc_fcs30?lang=zh_CN | ||||||||||
火烧迹地 BA | MCD64A1 v006 | MODIS | 2000-present | Monthly | 500 m | 1.5 | https://lpdaac.usgs.gov/products/mcd64a1v006/ | ||||||||
Burnt Area 300m | Sentinel-3/OLCI, SLSTR, PROBA-V | 2014-2020 | 10 d/monthly | 300 m | https://land.copernicus.eu/global/products/ba | ||||||||||
植被覆盖度 FCover | FCover | Sentinel-3/OLCI, PROBA-V | 2014-present | 10 d | 300m | 1.5 | https://land.copernicus.eu/global/products/fcover | ||||||||
Fractional Vegetation Coverage (FCover) (version: V40) | MODIS | 2000-2018 | 8 d | 500 m | http://www.glass.umd.edu/ | ||||||||||
冰面范围 IE | MODIS/Terra Sea Ice Extent 5-Min L2 Swath 1km, Version 6 | MODIS | 2000-present | 5 mins | 1 km | 1 | https://nsidc.org/data/mod29/versions/6#anchor-1 | ||||||||
SMOS L3 Sea Ice Thickness | SMOS | 2010-present | Daily | 12.5 km | https://earth.esa.int/eogateway/catalog/smos-l3-sea-ice-thickness | ||||||||||
栖息地异质性 Habitat heterogeneity | Global Habitat Heterogeneity | MODIS | 2005 | - | 1 km, 5 km, 25 km | 2 | http://www.earthenv.org/texture | ||||||||
森林冠层高度 Forest canopy height | Forest tree height map of China | GEDI, ICESAT2 | 2019 | - | 30 m | 2.5 | http://www.3decology.org/dataset-software/ | ||||||||
植被类型 Vegetation type | An updated Vegetation Map of China (1:1000,000) | Landsat | 2018 | - | 1:1,000,000 | 2.5 | http://www.3decology.org/dataset-software/ |
表2 能够免费获取的覆盖中国的生物多样性核心监测指标(EBVs)遥感产品指标集
Table 2 Open access remote sensing product indicators for Essential Biodiversity Variables (EBVs) monitoring in China
遥感产品 Remote sensing product | 数据名称 Data name | 卫星平台 Satellite platform | 获取时间 Acquire time | 时间分辨率 Time resolution | 空间分辨率/比例尺 Spatial resolution /Scale | 可重 复性 Repeata- bility | 下载链接 Download link | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
生态系统功能 Ecosystem functioning | |||||||||||||||
叶面积指数 LAI | MCD15A3H v006 | MODIS | 2000-present | 4 d | 500 m | 1 | https://lpdaac.usgs.gov/products/mcd15a3hv006/ | ||||||||
CGLS-LAI300 | Sentinel-3/ PROBA-V | 2014-present | 10 d | 300 m | https://land.copernicus.eu/global/products/lai | ||||||||||
GLASS-LAI | AVHRR | 1981-2018 | 8 d | 0.05° | 1 | http://www.glass.umd.edu/ | |||||||||
光合有效辐射分量 FAPAR | MCD15A3H v061 | MODIS | 2002-present | 8 d | 500 m | https://lpdaac.usgs.gov/products/mcd15a2hv061/ | |||||||||
CGLS-FAPAR300 | Sentinel-3/ PROBA-V | 2014-present | 10 d | 300 m | https://land.copernicus.eu/global/products/fapar | ||||||||||
GLASS-FAPAR | AVHRR | 1981-2018 | 8 d | 0.05° | http://www.glass.umd.edu/ | ||||||||||
蒸散 ET | MOD16A2 v006 | MODIS | 2001-present | 8 d | 500 m | 1 | https://lpdaac.usgs.gov/products/mod16a2v006/ | ||||||||
GLASS-ET | MODIS | 2000-2018 | 8 d | 1 km, 0.05° | 1 | http://www.glass.umd.edu/Download.html | |||||||||
净初级生产力 NPP | MOD17A3Hv006 | MODIS | 2001-present | Yearly | 500 m | https://lpdaac.usgs.gov/products/mod17a3hv006/ | |||||||||
总初级生产力 GPP | MOD17A2HGF v061 | MODIS | 2000-present | 8 d | 1 km | 1 | https://lpdaac.usgs.gov/products/mod17a2hgfv061/ | ||||||||
NIRv-GPP | AVHRR | 1982-2018 | Monthly | 0.05° | https://doi.org/10.12199/nesdc.ecodb.2016YFA0600200.02.002 | ||||||||||
GLASS-GPP | MODIS | 2000-2020 2000-2020 | 8 d | 500 m, 0.05° | http://www.glass.umd.edu/ | ||||||||||
叶绿素荧光 SIF | OCO2_L2_Lite_SIF 10r | OCO-2 | 2014-2022 | 16 d | 2.25 km | 1 | https://disc.gsfc.nasa.gov/datasets?keywords=OCO2%20SIF&page=1 | ||||||||
OCO2_L2_Lite_SIF 11r | OCO-2 | 2019-2022 | 16 d | 2.25 km | https://disc.gsfc.nasa.gov/datasets?keywords=OCO2%20SIF&page=1 | ||||||||||
OCO3_L2_Lite_SIF 10r | ISS OCO-3 | 2019-2022 | 16 d | 2.25 km | https://disc.gsfc.nasa.gov/datasets?keywords=OCO2%20SIF&page=1 | ||||||||||
Tansat-SIF | TanSat | 2017-2019 | Daily | 2 km | http://www.geodata.cn/data/datadetails.html?dataguid=3695497&docId=10126 | ||||||||||
叶绿素含量 Chlorophyll content | Chlleaf | ENVISAT- MERIS | 2011 | 7 d | 300 m | 2 | https://doi.org/10.1016/j.rse.2019.111479 | ||||||||
物候 Phenology | MCD12Q2 v006 | MODIS | 2001-2019 | Yearly | 500 m | 1.5 | https://lpdaac.usgs.gov/products/mcd12q2v006/ | ||||||||
叶片性状 Leaf traits | 叶片磷含量 LPC 比叶面积 LA 叶片干物质含量 LDMC | Global trait maps | 2015 | - | - | 1 km, 3 km | 2.5 | https://www.try-db.org/TryWeb/Data.php#59 | |||||||
生物量 Biomass | China forest Aboveground Biomass (AGB) map | ICESat/ GLAS, MODIS | 2004 | - | 1 km | 2 | http://www.3decology.org/dataset-software/ | ||||||||
Global Aboveground Biomass (AGB) Map (version: V02) | MODIS/ GLAS | 2005 | - | 1 km | http://www.glass.umd.edu/ | ||||||||||
遥感产品 Remote sensing product | 数据名称 Data name | 卫星平台 Satellite platform | 获取时间 Acquire time | 时间分辨率 Time resolution | 空间分辨率/比例尺 Spatial resolution /Scale | 可重 复性 Repeata- bility | 下载链接 Download link | ||||||||
生态系统结构 Ecosystem structure | |||||||||||||||
植被连续覆盖/全球森林覆盖变化 VCF/GFCC | Global 2010 Tree Cover (30 m) | Landsat | 2010 | - | 30 m | 2 | https://glad.umd.edu/dataset/global-2010-tree-cover-30-m | ||||||||
土地覆盖 LC | MCD12Q1 v006 | MODIS | 2001-2020 | Yearly | 500 m | 1.5 | https://lpdaac.usgs.gov/products/mcd12q1v006/ | ||||||||
GlobeLand30 | Landsat | 2000, 2010, 2020 | - | 30 m | http://www.globallandcover.com/ | ||||||||||
FROM_GLC30 | Landsat | 2010, 2015, 2017 | - | 30 m | http://data.ess.tsinghua.edu.cn/ | ||||||||||
GLC_FCS30 | Landsat | 1985-2020 | Every 5 years | 30 m | https://data.casearth.cn/thematic/glc_fcs30?lang=zh_CN | ||||||||||
火烧迹地 BA | MCD64A1 v006 | MODIS | 2000-present | Monthly | 500 m | 1.5 | https://lpdaac.usgs.gov/products/mcd64a1v006/ | ||||||||
Burnt Area 300m | Sentinel-3/OLCI, SLSTR, PROBA-V | 2014-2020 | 10 d/monthly | 300 m | https://land.copernicus.eu/global/products/ba | ||||||||||
植被覆盖度 FCover | FCover | Sentinel-3/OLCI, PROBA-V | 2014-present | 10 d | 300m | 1.5 | https://land.copernicus.eu/global/products/fcover | ||||||||
Fractional Vegetation Coverage (FCover) (version: V40) | MODIS | 2000-2018 | 8 d | 500 m | http://www.glass.umd.edu/ | ||||||||||
冰面范围 IE | MODIS/Terra Sea Ice Extent 5-Min L2 Swath 1km, Version 6 | MODIS | 2000-present | 5 mins | 1 km | 1 | https://nsidc.org/data/mod29/versions/6#anchor-1 | ||||||||
SMOS L3 Sea Ice Thickness | SMOS | 2010-present | Daily | 12.5 km | https://earth.esa.int/eogateway/catalog/smos-l3-sea-ice-thickness | ||||||||||
栖息地异质性 Habitat heterogeneity | Global Habitat Heterogeneity | MODIS | 2005 | - | 1 km, 5 km, 25 km | 2 | http://www.earthenv.org/texture | ||||||||
森林冠层高度 Forest canopy height | Forest tree height map of China | GEDI, ICESAT2 | 2019 | - | 30 m | 2.5 | http://www.3decology.org/dataset-software/ | ||||||||
植被类型 Vegetation type | An updated Vegetation Map of China (1:1000,000) | Landsat | 2018 | - | 1:1,000,000 | 2.5 | http://www.3decology.org/dataset-software/ |
卫星名称 Satellite name | 发射日期 Launch time | 轨道高度 Orbit height (km) | 重访周期 Revisit capacity | 幅宽 Swath width (km) | 传感器类型 Sensor type | 波段 Number of bands | 空间分辨率 Spatial resolution (m) |
---|---|---|---|---|---|---|---|
高分系列 GF series | |||||||
高分一号 GF-1 | 2013/4/26 | 645 | 4 d | 60 | 全色/多光谱 PAN/MS | 5 | 2/8 |
2 d | 800 | 宽视场多光谱 WFV-MS | 4 | 16 | |||
高分二号 GF-2 | 2014/8/19 | 631 | 5 d | 45 | 全色/多光谱 PAN/MS | 5 | 0.8/3.2 |
高分三号 GF-3 | 2016/8/10 | 755 | 2 d | 5-650 | 合成孔径雷达 SAR | 1 | 1-500 |
高分四号 GF-4 | 2015/12/29 | 36,000 | 20 s | 400 | 多光谱 MS | 5 | 50 |
400 | 中红外 MWIR | 1 | 400 | ||||
高分五号 GF-5 | 2018/5/9 | 705 | 5 d | 60 | 高光谱 HS | 330 | 30 |
60 | 多光谱 MS | 12 | 20/40 | ||||
高分六号 GF-6 | 2018/6/2 | 645 | 4 d | 90 | 全色/多光谱 PAN/MS | 5 | 2/8 |
2 d | 800 | 宽视场多光谱 WFV MS | 8 | 16 | |||
高分七号 GF-7 | 2019/11/3 | 505 | 5 d | 20 | 双线阵相机 DLC | 1 | 0.8/0.65 |
20 | 多光谱 MS | 4 | 3.2 | ||||
1.6 | 激光测高仪 LA | 1 | 0.1 | ||||
高分一号 02/03/04星 GF-1-02\03\04 | 2018/3/31 | 645 | 2 d | 66 | 全色/多光谱 PAN/MS | 5 | 2/8 |
资源系列 ZY series | |||||||
资源一号01/02星 ZY-1-01/02 | 1999/10/14 | 778 | 3 d | 113 | CCD相机 CCD | 5 | 20 |
3 d | 890 | 宽视场多光谱 WFV-MS | 2 | 258 | |||
26 d | 119.5 | 红外多光谱 MS-IR | 4 | 78/156 | |||
资源一号02B星 ZY-1-02B | 2007/12/19 | 778 | 3 d | 27 | 高分辨率相机 HD | 1 | 2.36 |
113 | CCD相机 CCD | 5 | 20 | ||||
890 | 宽视场多光谱 WFV-MS | 2 | 258 | ||||
资源一号02C星 ZY-1-02C | 2011/12/22 | 780 | 3 d | 54 | 高分辨率相机 HD | 1 | 2.36 |
60 | 全色/多光谱 PAN/MS | 4 | 5/10 | ||||
资源一号04星 ZY-1-04 | 2014/12/7 | 778 | 3 d | 60 | 全色/多光谱 PAN/MS | 4 | 5/10 |
26 d | 120 | 红外多光谱 MS-IR | 4 | 40/80 | |||
26 d | 120 | 多光谱 MS | 4 | 20 | |||
3 d | 866 | 宽视场多光谱 WFV MS | 4 | 73 | |||
资源一号02D星 ZY-1-02D | 2019/12/12 | 778 | 3 d | 115 | 全色/多光谱 PAN/MS | 9 | 2.5/10 |
60 | 高光谱相机 HS | 166 | 30 | ||||
资源三号01星 ZY-3-01 | 2012/1/9 | 506 | 5 d | 52 | 双线阵相机 DLC | 1 | 3.5 |
52 | 全色/多光谱 PAN/MS | 5 | 2.1/5.8 | ||||
资源三号02星 ZY-3-02 | 2016/5/3 | 505 | 3-5 d | 51 | 双线阵相机 DLC | 1 | 2.5 |
3 d | 51 | 全色/多光谱 PAN/MS | 4 | 2.1/5.8 | |||
资源三号03星 ZY-3-03 | 2020/7/25 | 505 | 3-5 d | 51 | 双线阵相机 DLC | 1 | 2.5 |
3 d | 51 | 全色/多光谱 PAN/MS | 4 | 2.1/5.8 | |||
5 d | 0.07 | 激光测高仪 LA | 1 | 1 | |||
环境一号 HS-1 | |||||||
环境一号 A星 HS-1A | 2008/9/6 | 649 | 4 d | 360 | CCD相机 CCD | 4 | 30 |
50 | 高光谱 HS | 115 | 100 | ||||
环境一号 B星 HS-1B | 2008/9/6 | 649 | 4 d | 360 | CCD相机 CCD | 4 | 30 |
720 | 红外多光谱 MS-IR | 4 | 150/300 | ||||
环境一号 C星 HS-1C | 2012/12/9 | 499 | 4 d | 40/100 | 合成孔径雷达 SAR | 1 | 5/25 |
实践九号 SJ-9 | |||||||
实践九号 A星 SJ-9A | 2012/10/14 | 645 | 4 d | 30 | 全色/多光谱 PAN/MS | 5 | 2.5/10 |
实践九号 B星 SJ-9B | 2012/10/14 | 645 | 8 d | 18 | 红外相机 IR | 1 | 73 |
表3 有潜力进行生物多样性核心监测指标(EBVs)遥感数据获取的国产卫星及其主要参数介绍
Table 3 The specification of China’s satellites that has the potential to acquire EBVs-related remote sensing products
卫星名称 Satellite name | 发射日期 Launch time | 轨道高度 Orbit height (km) | 重访周期 Revisit capacity | 幅宽 Swath width (km) | 传感器类型 Sensor type | 波段 Number of bands | 空间分辨率 Spatial resolution (m) |
---|---|---|---|---|---|---|---|
高分系列 GF series | |||||||
高分一号 GF-1 | 2013/4/26 | 645 | 4 d | 60 | 全色/多光谱 PAN/MS | 5 | 2/8 |
2 d | 800 | 宽视场多光谱 WFV-MS | 4 | 16 | |||
高分二号 GF-2 | 2014/8/19 | 631 | 5 d | 45 | 全色/多光谱 PAN/MS | 5 | 0.8/3.2 |
高分三号 GF-3 | 2016/8/10 | 755 | 2 d | 5-650 | 合成孔径雷达 SAR | 1 | 1-500 |
高分四号 GF-4 | 2015/12/29 | 36,000 | 20 s | 400 | 多光谱 MS | 5 | 50 |
400 | 中红外 MWIR | 1 | 400 | ||||
高分五号 GF-5 | 2018/5/9 | 705 | 5 d | 60 | 高光谱 HS | 330 | 30 |
60 | 多光谱 MS | 12 | 20/40 | ||||
高分六号 GF-6 | 2018/6/2 | 645 | 4 d | 90 | 全色/多光谱 PAN/MS | 5 | 2/8 |
2 d | 800 | 宽视场多光谱 WFV MS | 8 | 16 | |||
高分七号 GF-7 | 2019/11/3 | 505 | 5 d | 20 | 双线阵相机 DLC | 1 | 0.8/0.65 |
20 | 多光谱 MS | 4 | 3.2 | ||||
1.6 | 激光测高仪 LA | 1 | 0.1 | ||||
高分一号 02/03/04星 GF-1-02\03\04 | 2018/3/31 | 645 | 2 d | 66 | 全色/多光谱 PAN/MS | 5 | 2/8 |
资源系列 ZY series | |||||||
资源一号01/02星 ZY-1-01/02 | 1999/10/14 | 778 | 3 d | 113 | CCD相机 CCD | 5 | 20 |
3 d | 890 | 宽视场多光谱 WFV-MS | 2 | 258 | |||
26 d | 119.5 | 红外多光谱 MS-IR | 4 | 78/156 | |||
资源一号02B星 ZY-1-02B | 2007/12/19 | 778 | 3 d | 27 | 高分辨率相机 HD | 1 | 2.36 |
113 | CCD相机 CCD | 5 | 20 | ||||
890 | 宽视场多光谱 WFV-MS | 2 | 258 | ||||
资源一号02C星 ZY-1-02C | 2011/12/22 | 780 | 3 d | 54 | 高分辨率相机 HD | 1 | 2.36 |
60 | 全色/多光谱 PAN/MS | 4 | 5/10 | ||||
资源一号04星 ZY-1-04 | 2014/12/7 | 778 | 3 d | 60 | 全色/多光谱 PAN/MS | 4 | 5/10 |
26 d | 120 | 红外多光谱 MS-IR | 4 | 40/80 | |||
26 d | 120 | 多光谱 MS | 4 | 20 | |||
3 d | 866 | 宽视场多光谱 WFV MS | 4 | 73 | |||
资源一号02D星 ZY-1-02D | 2019/12/12 | 778 | 3 d | 115 | 全色/多光谱 PAN/MS | 9 | 2.5/10 |
60 | 高光谱相机 HS | 166 | 30 | ||||
资源三号01星 ZY-3-01 | 2012/1/9 | 506 | 5 d | 52 | 双线阵相机 DLC | 1 | 3.5 |
52 | 全色/多光谱 PAN/MS | 5 | 2.1/5.8 | ||||
资源三号02星 ZY-3-02 | 2016/5/3 | 505 | 3-5 d | 51 | 双线阵相机 DLC | 1 | 2.5 |
3 d | 51 | 全色/多光谱 PAN/MS | 4 | 2.1/5.8 | |||
资源三号03星 ZY-3-03 | 2020/7/25 | 505 | 3-5 d | 51 | 双线阵相机 DLC | 1 | 2.5 |
3 d | 51 | 全色/多光谱 PAN/MS | 4 | 2.1/5.8 | |||
5 d | 0.07 | 激光测高仪 LA | 1 | 1 | |||
环境一号 HS-1 | |||||||
环境一号 A星 HS-1A | 2008/9/6 | 649 | 4 d | 360 | CCD相机 CCD | 4 | 30 |
50 | 高光谱 HS | 115 | 100 | ||||
环境一号 B星 HS-1B | 2008/9/6 | 649 | 4 d | 360 | CCD相机 CCD | 4 | 30 |
720 | 红外多光谱 MS-IR | 4 | 150/300 | ||||
环境一号 C星 HS-1C | 2012/12/9 | 499 | 4 d | 40/100 | 合成孔径雷达 SAR | 1 | 5/25 |
实践九号 SJ-9 | |||||||
实践九号 A星 SJ-9A | 2012/10/14 | 645 | 4 d | 30 | 全色/多光谱 PAN/MS | 5 | 2.5/10 |
实践九号 B星 SJ-9B | 2012/10/14 | 645 | 8 d | 18 | 红外相机 IR | 1 | 73 |
[1] |
Arenas-Castro S, Regos A, Gonçalves JF, Alcaraz-Segura D, Honrado J (2019) Remotely sensed variables of ecosystem functioning support robust predictions of abundance patterns for rare species. Remote Sensing, 11, 2086.
DOI URL |
[2] |
Asner GP, Martin RE (2016) Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Global Ecology and Conservation, 8, 212-219.
DOI URL |
[3] |
Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature, 471, 51-57.
DOI URL |
[4] |
Brisson J (2001) Neighborhood competition and crown asymmetry in Acer saccharum. Canadian Journal of Forest Research, 31, 2151-2159.
DOI URL |
[5] |
Burkepile DE, Parker JD (2017) Recent advances in plant-herbivore interactions. F1000Research, 6, 119.
DOI PMID |
[6] |
Butcher P, Colefax A, Gorkin R, Kajiura S, López N, Mourier J, Purcell C, Skomal G, Tucker J, Walsh A, Williamson J, Raoult V (2021) The drone revolution of shark science: A review. Drones, 5, 8.
DOI URL |
[7] |
Camacho F, Cernicharo J, Lacaze R, Baret F, Weiss M (2013) GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sensing of Environment, 137, 310-329.
DOI URL |
[8] | Chen LD, Fu BJ (2004) Ecological significance, characteristics and types of disturbance. Acta Ecologica Sinica, 20, 581-586. (in Chinese with English abstract) |
[陈利顶, 傅伯杰 (2004) 干扰的类型、特征及其生态学意义. 生态学报, 20, 581-586.] | |
[9] | Conti L, Malavasi M, Galland T, Komárek J, Lagner O, Carmona CP, Bello F, Rocchini D, Šímová P (2021) The relationship between species and spectral diversity in grassland communities is mediated by their vertical complexity. Applied Vegetation Science, 24, e12600. |
[10] |
Dalla Corte APD, Souza DV, Rex FE, Sanquetta CR, Mohan M, Silva CA, Zambrano AMA, Prata G,Alves de Almeida DR, Trautenmüller JW, Klauberg C, de Moraes A, Sanquetta MN, Wilkinson B, Broadbent EN (2020) Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes. Computers and Electronics in Agriculture, 179, 105815.
DOI URL |
[11] |
Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biology, 4, e277.
DOI PMID |
[12] |
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the anthropocene. Science, 345, 401-406.
DOI PMID |
[13] |
Fang HL, Baret F, Plummer S, Schaepman-Strub G (2019) An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57, 739-799.
DOI URL |
[14] | Fang JY, Liu LL (2021) Ecosystem Ecology:Reviews and Perspectives. Higher Education Press, Beijing. (in Chinese) |
[方精云, 刘玲莉 (2021) 生态系统生态学回顾与展望. 高等教育出版社, 北京 ] | |
[15] |
Féret JB, Asner GP (2014) Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecological Applications, 24, 1289-1296.
DOI URL |
[16] |
Filipponi F, Valentini E, Nguyen Xuan A, Guerra C, Wolf F, Andrzejak M, Taramelli A (2018) Global MODIS fraction of green vegetation cover for monitoring abrupt and gradual vegetation changes. Remote Sensing, 10, 653.
DOI URL |
[17] | Frolking S, Palace MW, Clark DB, Chambers JQ, Shugart HH, Hurtt GC (2009) Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research: Biogeosciences, 114, G00E02. |
[18] |
Frye HA, Aiello-Lammens ME, Euston-Brown D, Jones CS, Kilroy Mollmann H, Merow C, Slingsby JA, van der Merwe H, Wilson AM, Silander JA Jr (2021) Plant spectral diversity as a surrogate for species, functional and phylogenetic diversity across a hyper-diverse biogeographic region. Global Ecology and Biogeography, 30, 1403-1417.
DOI URL |
[19] |
Ganguly S, Friedl MA, Tan B, Zhang XY, Verma M (2010) Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sensing of Environment, 114, 1805-1816.
DOI URL |
[20] |
Gholizadeh H, Gamon JA, Zygielbaum AI, Wang R, Schweiger AK, Cavender-Bares J (2018) Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems. Remote Sensing of Environment, 206, 240-253.
DOI URL |
[21] | Grams TEE, Andersen CP (2007) Competition for resources in trees: Physiological versus morphological plasticity. Progress in Botany. In: Progress in Botany (eds Esser K, Löttge U, Beyschlag W, Murata J). Springer Heidelberg, Berlin. |
[22] | Guo QH, Liu J, Tao SL, Xue BL, Li L, Xu GC, Li WK, Wu FF, Li YM, Chen LH, Pang SX (2014) Perspectives and prospects of LiDAR in forest ecosystem monitoring and modeling. Chinese Science Bulletin, (6), 459-478. (in Chinese with English abstract) |
[郭庆华, 刘瑾, 陶胜利, 薛宝林, 李乐, 徐光彩, 李文楷, 吴芳芳, 李玉美, 陈琳海, 庞树鑫 (2014) 激光雷达在森林生态系统监测模拟中的应用现状与展望. 科学通报, (6), 459-478.] | |
[23] |
Hakkenberg CR, Zhu K, Peet RK, Song C (2018) Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Ecology, 99, 474-487.
DOI PMID |
[24] | Hargrove W, Spruce J, Gasser G, Hoffman F (2009) Toward a national early warning system for forest disturbances using remotely sensed canopy phenology. Photogrammetric Engineering and Remote Sensing, 75, 1150-1156. |
[25] |
Hmimina G, Dufrêne E, Pontailler JY, Delpierre N, Aubinet M, Caquet B, de Grandcourt A, Burban B, Flechard C, Granier A, Gross P, Heinesch B, Longdoz B, Moureaux C, Ourcival JM, Rambal S, André LS, Soudani K (2013) Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sensing of Environment, 132, 145-158.
DOI URL |
[26] |
Hoban S, Bruford M, Jackson JD, Lopes-Fernandes M, Heuertz M, Hohenlohe PA, Paz-Vinas I, Sjögren-Gulve P, Segelbacher G, Vernesi C, Aitken S, Bertola LD, Bloomer P, Breed M, Rodríguez-Correa H, Funk WC, Grueber CE, Hunter ME, Laikre L (2020) Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 248, 108654.
DOI URL |
[27] |
Hufkens K, Friedl M, Sonnentag O, Braswell BH, Milliman T, Richardson AD (2012) Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 117, 307-321.
DOI URL |
[28] |
Jetz W, Cavender-Bares J, Pavlick R, Schimel D, Davis FW, Asner GP, Guralnick R, Kattge J, Latimer AM, Moorcroft P, Schaepman ME, Schildhauer MP, Schneider FD, Schrodt F, Stahl U, Ustin SL (2016) Monitoring plant functional diversity from space. Nature Plants, 2, 16024.
DOI PMID |
[29] | Jetz W, McGeoch MA, Guralnick R, Ferrier S, Beck J, Costello MJ, Fernandez M, Geller GN, Keil P, Merow C, Meyer C, Muller-Karger FE, Pereira HM, Regan EC, Schmeller DS, Turak E (2019) Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3, 539-551. |
[30] |
Jiao QJ, Sun Q, Zhang B, Huang WJ, Ye HC, Zhang ZM, Zhang X, Qian BX (2021) A random forest algorithm for retrieving canopy chlorophyll content of wheat and soybean trained with PROSAIL simulations using adjusted average leaf angle. Remote Sensing, 14, 98.
DOI URL |
[31] |
Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6, 7537.
DOI PMID |
[32] |
Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sensing of Environment, 83, 244-262.
DOI URL |
[33] | Kissling WD, Walls R, Bowser A, Jones MO, Kattge J, Agosti D, Amengual J, Basset A, van Bodegom PM, Cornelissen JHC, Denny EG, Deudero S, Egloff W, Elmendorf SC, Alonso García E, Jones KD, Jones OR, Lavorel S, Lear D, Navarro LM, Pawar S, Pirzl R, Rüger N, Sal S, Salguero-Gómez R, Schigel D, Schulz KS, Skidmore A, Guralnick RP (2018) Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology & Evolution, 2, 1531-1540. |
[34] |
Lausch A, Bannehr L, Beckmann M, Boehm C, Feilhauer H, Hacker JM, Heurich M, Jung A, Klenke R, Neumann C, Pause M, Rocchini D, Schaepman ME, Schmidtlein S, Schulz K, Selsam P, Settele J, Skidmore AK, Cord AF (2016) Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecological Indicators, 70, 317-339.
DOI URL |
[35] |
Li Y, Hess C, Wehrden H, Härdtle W, Oheimb G (2014) Assessing tree dendrometrics in young regenerating plantations using terrestrial laser scanning. Annals of Forest Science, 71, 453-462.
DOI URL |
[36] |
Liu H, Gong P, Wang J, Clinton N, Bai YQ, Liang SL (2020) Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth System Science Data, 12, 1217-1243.
DOI URL |
[37] |
Liu J, Skidmore AK, Heurich M, Wang TJ (2017) Significant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests. ISPRS Journal of Photogrammetry and Remote Sensing, 132, 77-87.
DOI URL |
[38] |
Liu LL, Zhang XY, Yu YY, Guo W (2017) Real-time and short-term predictions of spring phenology in North America from VIIRS data. Remote Sensing of Environment, 194, 89-99.
DOI URL |
[39] |
Liu X, Hao YS, Widagdo FRA, Xie LF, Dong LH, Li FR (2021) Predicting height to crown base of Larix olgensis in northeast China using UAV-LiDAR data and nonlinear mixed effects models. Remote Sensing, 13, 1834.
DOI URL |
[40] |
Liu XQ, Su YJ, Hu TY, Yang QL, Liu BB, Deng YF, Tang H, Tang ZY, Fang JY, Guo QH (2022) Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment, 269, 112844.
DOI URL |
[41] |
Liu Y, Hill MJ, Zhang XY, Wang ZS, Richardson AD, Hufkens K, Filippa G, Baldocchi DD, Ma SY, Verfaillie J, Schaaf CB (2017c) Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales. Agricultural and Forest Meteorology, 237/238, 311-325.
DOI URL |
[42] |
Ma XL, Mahecha MD, Migliavacca M, van der Plas F, Benavides R, Ratcliffe S, Kattge J, Richter R, Musavi T, Baeten L, Barnoaiea I, Bohn FJ, Bouriaud O, Bussotti F, Coppi A, Domisch T, Huth A, Jaroszewicz B, Wirth C(2019) Inferring plant functional diversity from space: The potential of Sentinel-2. Remote Sensing of Environment, 233, 111368.
DOI URL |
[43] |
Ma XL, Migliavacca M, Wirth C, Bohn FJ, Huth A, Richter R, Mahecha MD (2020) Monitoring plant functional diversity using the reflectance and echo from space. Remote Sensing, 12, 1248.
DOI URL |
[44] |
Madonsela S, Cho MA, Ramoelo A, Mutanga O (2017) Remote sensing of species diversity using Landsat 8 spectral variables. ISPRS Journal of Photogrammetry and Remote Sensing, 133, 116-127.
DOI URL |
[45] |
Meddens AJH, Hicke JA (2014) Spatial and temporal patterns of Landsat-based detection of tree mortality caused by a mountain pine beetle outbreak in Colorado, USA. Forest Ecology and Management, 322, 78-88.
DOI URL |
[46] |
Nasahara KN, Nagai S (2015) Review: Development of an in situ observation network for terrestrial ecological remote sensing: The Phenological Eyes Network (PEN). Ecological Research, 30, 211-223.
DOI URL |
[47] | Niu CJ, Lou AR, Sun RY, Li QF (2007) Foundations in Ecology. Higher Education Press, Beijing. (in Chinese) |
[牛翠娟, 娄安如, 孙儒泳, 李庆芬 (2007) 基础生态学. 高等教育出版社, 北京.] | |
[48] |
Pinton D, Canestrelli A, Wilkinson B, Ifju P, Ortega A (2021) Estimating ground elevation and vegetation characteristicsin coastal salt marshes using UAV-based LiDAR and digital aerial photogrammetry. Remote Sensing, 13, 4506.
DOI URL |
[49] |
Potapov P, Li XY, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva CE, Armston J, Dubayah R, Blair JB, Hofton M (2021) Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 253, 112165.
DOI URL |
[50] |
Proença V, Martin LJ, Pereira HM, Fernandez M, McRae L, Belnap J, Böhm M, Brummitt N, García-Moreno J, Gregory RD, Honrado JP, Jürgens N, Opige M, Schmeller DS, Tiago P,van Swaay CAM (2017) Global biodiversity monitoring: From data sources to Essential Biodiversity Variables. Biological Conservation, 213, 256-263.
DOI URL |
[51] |
Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703-714.
DOI URL |
[52] |
Rocchini D, Bacaro G, Chirici G, da Re D, Feilhauer H, Foody GM, Galluzzi M, Garzon-Lopez CX, Gillespie TW, He KS, Lenoir J, Marcantonio M, Nagendra H, Ricotta C, Rommel E, Schmidtlein S, Skidmore AK, van de Kerchove R, Rugani B (2018) Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecological Indicators, 85, 983-990.
DOI URL |
[53] |
Rocchini D, Boyd DS, Féret JB, Foody GM, He KS, Lausch A, Nagendra H, Wegmann M, Pettorelli N (2016) Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sensing in Ecology and Conservation, 2, 25-36.
DOI URL |
[54] |
Rocchini D, Salvatori N, Beierkuhnlein C, Chiarucci A, de Boissieu F, Förster M, Garzon-Lopez CX, Gillespie TW, Hauffe HC, He KS, Kleinschmit B, Lenoir J, Malavasi M, Moudrý V, Nagendra H, Payne D, Šímová P, Torresani M, Féret JB (2021) From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing. Ecological Informatics, 61, 101195.
DOI URL |
[55] |
Rossi C, Kneubühler M, Schütz M, Schaepman ME, Haller RM, Risch AC (2020) From local to regional: Functional diversity in differently managed alpine grasslands. Remote Sensing of Environment, 236, 111415.
DOI URL |
[56] |
Rossi C, Kneubühler M, Schütz M, Schaepman ME, Haller RM, Risch AC (2022) Spatial resolution, spectral metrics and biomass are key aspects in estimating plant species richness from spectral diversity in species-rich grasslands. Remote Sensing in Ecology and Conservation, 8, 297-314.
DOI URL |
[57] |
Ruiz-García D, Adams K, Brown H, Davis AR (2020) Determining stingray movement patterns in a wave-swept coastal zone using a blimp for continuous aerial video surveillance. Fishes, 5, 31.
DOI URL |
[58] | Skidmore AK, Coops NC, Neinavaz E, Ali A, Schaepman ME, Paganini M, Kissling WD, Vihervaara P, Darvishzadeh R, Feilhauer H, Fernandez M, Fernández N, Gorelick N, Geijzendorffer I, Heiden U, Heurich M, Hobern D, Holzwarth S, Muller-Karger FE, van de Kerchove R, Lausch A, Leitão PJ, Lock MC, Mücher CA, O’Connor B, Rocchini D, Roeoesli C, Turner W, Vis JK, Wang TJ, Wegmann M, Wingate V (2021) Priority list of biodiversity metrics to observe from space. Nature Ecology & Evolution, 5, 896-906. |
[59] |
Slavík M, Kuželka K, Modlinger R, Tomášková I, Surový P (2020) UAV laser scans allow detection of morphological changes in tree canopy. Remote Sensing, 12, 3829.
DOI URL |
[60] |
Su XK, Dong SK, Liu SL, Cracknell AP, Zhang Y, Wang XX, Liu GH (2018) Using an unmanned aerial vehicle (UAV) to study wild yak in the highest desert in the world. International Journal of Remote Sensing, 39, 5490-5503.
DOI URL |
[61] |
Su YJ, Guo QH, Hu TY, Guan HC, Jin SC, An SZ, Chen XL, Guo K, Hao ZQ, Hu YM, Huang YM, Jiang MX, Li JX, Li ZJ, Li XK, Li XW, Liang CZ, Liu RL, Ma KP (2020) An updated vegetation map of China (1:1000000). Science Bulletin, 65, 1125-1136.
DOI URL |
[62] |
Su YJ, Guo QH, Xue BL, Hu TY, Alvarez O, Tao SL, Fang JY (2016) Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 173, 187-199.
DOI URL |
[63] |
Sun H, Hu JQ, Wang JX, Zhou JH, Lv L, Nie JY (2021) RSPD: A novel remote sensing index of plant biodiversity combining spectral variation hypothesis and productivity hypothesis. Remote Sensing, 13, 3007.
DOI URL |
[64] |
Tellman B, Sullivan JA, Kuhn C, Kettner AJ, Doyle CS, Brakenridge GR, Erickson TA, Slayback DA (2021) Satellite imaging reveals increased proportion of population exposed to floods. Nature, 596, 80-86.
DOI URL |
[65] |
Tuanmu MN, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24, 1329-1339.
DOI URL |
[66] |
Vrieling A, Meroni M, Darvishzadeh R, Skidmore AK, Wang TJ, Zurita-Milla R, Oosterbeek K, O’Connor B, Paganini M (2018) Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 215, 517-529.
DOI URL |
[67] |
Wang R, Gamon JA (2019) Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 231, 111218.
DOI URL |
[68] |
Xiao JF, Chevallier F, Gomez C, Guanter L, Hicke JA, Huete AR, Ichii K, Ni WJ, Pang Y, Rahman AF, Sun GQ, Yuan WP, Zhang L, Zhang XY (2019) Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383.
DOI URL |
[69] |
Xu WB, Deng SS, Liang D, Cheng XJ (2021) A crown morphology-based approach to individual tree detection in subtropical mixed broadleaf urban forests using UAV LiDAR data. Remote Sensing, 13, 1278.
DOI URL |
[70] |
Ye HC, Huang WJ, Huang SY, Wu B, Dong YY, Cui B (2018) Remote estimation of nitrogen vertical distribution by consideration of maize geometry characteristics. Remote Sensing, 10, 1995.
DOI URL |
[71] |
Yu T, Sun R, Xiao ZQ, Zhang Q, Liu G, Cui TX, Wang JM (2018) Estimation of global vegetation productivity from Global LAnd Surface Satellite data. Remote Sensing, 10, 327.
DOI URL |
[72] |
Zhang JJ, Cheng T, Guo W, Xu X, Qiao HB, Xie YM, Ma XM (2021) Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Plant Methods, 17, 49.
DOI PMID |
[73] |
Zhang X, Liu LY, Chen XD, Gao Y, Xie S, Mi J (2021) GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 13, 2753-2776.
DOI URL |
[74] |
Zhao JB, Zhang YP, Tan ZH, Song QH, Liang NS, Yu L, Zhao JF (2012) Using digital cameras for comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain forest. Ecological Informatics, 10, 65-72.
DOI URL |
[75] |
Zhao YJ, Sun YH, Chen WH, Zhao YP, Liu XL, Bai YF (2021) The potential of mapping grassland plant diversity with the links among spectral diversity, functional trait diversity, and species diversity. Remote Sensing, 13, 3034.
DOI URL |
[76] |
Zhao YJ, Zeng Y, Zheng ZJ, Dong WX, Zhao D, Wu BF, Zhao QJ (2018) Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China. Remote Sensing of Environment, 213, 104-114.
DOI URL |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[15] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn