生物多样性 ›› 2021, Vol. 29 ›› Issue (6): 735-745. DOI: 10.17520/biods.2020331
王爱霞1,2, 马婧婧1,2, 龚会蝶1,2, 范国安1,2, 王茂1, 赵红梅1,2, 程军回1,2,*()
收稿日期:
2020-08-16
接受日期:
2020-12-16
出版日期:
2021-06-20
发布日期:
2021-05-16
通讯作者:
程军回
作者简介:
* E-mail: cjhgraymice@126.com基金资助:
Aixia Wang1,2, Jingjing Ma1,2, Huidie Gong1,2, Guoan Fan1,2, Mao Wang1, Hongmei Zhao1,2, Junhui Cheng1,2,*()
Received:
2020-08-16
Accepted:
2020-12-16
Online:
2021-06-20
Published:
2021-05-16
Contact:
Junhui Cheng
摘要:
理解植物多样性变化的影响因素一直是群落生态学和生物地理学研究的重要内容。大量研究显示, 植物多样性受到海拔、古气候、现代气候、土壤养分和地上生物量等一系列因素的影响。然而, 很少有研究综合考虑这些因素对植物多样性的影响和相对重要性。本研究以北疆一年生早春短命植物为研究对象, 以2017年和2018年对32个样地调查的物种丰富度为基础, 通过一般线性模型和偏最小二乘通径模型分析了海拔、气候因素(年平均温度、冬季降水、2‒5月降水以及末次冰期以来2‒5月降水变化距平)、土壤养分(pH、土壤有机碳、全氮、全磷、碳氮比、碳磷比和氮磷比)和地上生物量与该类植物物种丰富度平均值的关系及其相对重要性。结果显示: (1)一年生早春短命植物物种丰富度与海拔、年均温度、2‒5月降水、末次冰期以来2‒5月降水变化距平、土壤pH、土壤碳氮比和地上生物量均呈现显著的单峰型关系, 而与冬季降水之间表现为先降低后增加的变化趋势, 表明该类植物多样性同时受到多种因素的影响; (2)海拔、气候因素和土壤养分不仅对该类植物物种丰富度存在显著的直接影响, 也可通过改变地上生物量进而对其物种丰富度产生间接影响; (3)这些因素中, 气候因素是影响一年生早春短命植物物种丰富度的最主要影响因素, 其次分别为地上生物量、海拔和土壤养分。海拔、土壤养分、气候因素及地上生物量共同驱动了北疆地区一年生早春短命植物丰富度的变化。
王爱霞, 马婧婧, 龚会蝶, 范国安, 王茂, 赵红梅, 程军回 (2021) 北疆一年生早春短命植物物种丰富度分布格局及其影响因素. 生物多样性, 29, 735-745. DOI: 10.17520/biods.2020331.
Aixia Wang, Jingjing Ma, Huidie Gong, Guoan Fan, Mao Wang, Hongmei Zhao, Junhui Cheng (2021) Patterns and drivers of species richness of early spring annual ephemeral plants in northern Xinjiang. Biodiversity Science, 29, 735-745. DOI: 10.17520/biods.2020331.
样地号 Sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 物种丰富度 Species richness (Mean ± SD) |
---|---|---|---|---|
1 | 44.12° | 80.84° | 696 | 6.6 ± 1.17 |
2 | 43.46° | 81.92° | 1,130 | 1.5 ± 0.53 |
3 | 43.67° | 81.16° | 914 | 5.0 ± 0.94 |
4 | 43.66° | 81.99° | 739 | 4.6 ± 1.65 |
5 | 43.61° | 82.75° | 826 | 2.5 ± 0.58 |
6 | 43.40° | 83.15° | 934 | 3.6 ± 1.07 |
7 | 43.64° | 81.69° | 678 | 3.0 ± 1.85 |
8 | 44.37° | 87.88° | 448 | 5.6 ± 1.26 |
9 | 44.09° | 88.68° | 748 | 2.7 ± 0.67 |
10 | 43.69° | 89.51° | 1,488 | 1.2 ± 0.42 |
11 | 44.21° | 90.07° | 742 | 3.3 ± 1.49 |
12 | 44.96° | 88.94° | 556 | 2.8 ± 1.14 |
13 | 44.95° | 88.58° | 632 | 3.5 ± 1.72 |
14 | 45.22° | 87.78° | 589 | 3.3 ± 1.42 |
15 | 45.41° | 86.91° | 395 | 3.5 ± 1.51 |
16 | 45.47° | 85.75° | 286 | 1.3± 0.50 |
17 | 46.23° | 85.84° | 502 | 1.5 ± 0.71 |
18 | 47.28° | 86.73° | 665 | 1.25 ± 0.50 |
19 | 47.67° | 86.88° | 497 | 1.6 ± 0.70 |
20 | 47.04° | 88.92° | 802 | 1.6 ± 0.70 |
21 | 47.50° | 87.31° | 494 | 1.7 ± 0.67 |
22 | 47.04° | 88.92° | 802 | 1.0# |
23 | 46.79° | 89.58° | 954 | 1.6 ± 0.97 |
24 | 45.82° | 89.52° | 1,021 | 2.6 ± 1.78 |
25 | 45.16° | 89.36° | 1,073 | 1.2 ± 0.42 |
26 | 44.63° | 88.82° | 538 | 4.8 ± 1.32 |
27 | 44.16° | 88.71° | 603 | 3.0 ± 1.25 |
28 | 44.91° | 84.81° | 287 | 4.2 ± 1.23 |
29 | 46.04° | 83.60° | 864 | 4.0 ± 2.49 |
30 | 44.93° | 82.62° | 211 | 2.1 ± 1.29 |
31 | 44.52° | 82.91° | 411 | 3.5 ± 1.31 |
32 | 44.35° | 85.09° | 532 | 6.1 ± 2.60 |
表1 各样地基本信息(经纬度和海拔)、物种丰富度特征
Table 1 Basic information (latitude, longitude and elevation) and species richness
样地号 Sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 物种丰富度 Species richness (Mean ± SD) |
---|---|---|---|---|
1 | 44.12° | 80.84° | 696 | 6.6 ± 1.17 |
2 | 43.46° | 81.92° | 1,130 | 1.5 ± 0.53 |
3 | 43.67° | 81.16° | 914 | 5.0 ± 0.94 |
4 | 43.66° | 81.99° | 739 | 4.6 ± 1.65 |
5 | 43.61° | 82.75° | 826 | 2.5 ± 0.58 |
6 | 43.40° | 83.15° | 934 | 3.6 ± 1.07 |
7 | 43.64° | 81.69° | 678 | 3.0 ± 1.85 |
8 | 44.37° | 87.88° | 448 | 5.6 ± 1.26 |
9 | 44.09° | 88.68° | 748 | 2.7 ± 0.67 |
10 | 43.69° | 89.51° | 1,488 | 1.2 ± 0.42 |
11 | 44.21° | 90.07° | 742 | 3.3 ± 1.49 |
12 | 44.96° | 88.94° | 556 | 2.8 ± 1.14 |
13 | 44.95° | 88.58° | 632 | 3.5 ± 1.72 |
14 | 45.22° | 87.78° | 589 | 3.3 ± 1.42 |
15 | 45.41° | 86.91° | 395 | 3.5 ± 1.51 |
16 | 45.47° | 85.75° | 286 | 1.3± 0.50 |
17 | 46.23° | 85.84° | 502 | 1.5 ± 0.71 |
18 | 47.28° | 86.73° | 665 | 1.25 ± 0.50 |
19 | 47.67° | 86.88° | 497 | 1.6 ± 0.70 |
20 | 47.04° | 88.92° | 802 | 1.6 ± 0.70 |
21 | 47.50° | 87.31° | 494 | 1.7 ± 0.67 |
22 | 47.04° | 88.92° | 802 | 1.0# |
23 | 46.79° | 89.58° | 954 | 1.6 ± 0.97 |
24 | 45.82° | 89.52° | 1,021 | 2.6 ± 1.78 |
25 | 45.16° | 89.36° | 1,073 | 1.2 ± 0.42 |
26 | 44.63° | 88.82° | 538 | 4.8 ± 1.32 |
27 | 44.16° | 88.71° | 603 | 3.0 ± 1.25 |
28 | 44.91° | 84.81° | 287 | 4.2 ± 1.23 |
29 | 46.04° | 83.60° | 864 | 4.0 ± 2.49 |
30 | 44.93° | 82.62° | 211 | 2.1 ± 1.29 |
31 | 44.52° | 82.91° | 411 | 3.5 ± 1.31 |
32 | 44.35° | 85.09° | 532 | 6.1 ± 2.60 |
图2 一年生早春短命植物物种丰富度随海拔梯度(a)、年均温度(b)、冬季降水量(c)、2?5月降水量(d)、末次冰期以来降水变化距平(e)、土壤养分(f, g)和群落地上生物量变化特征(h)。图中实线和虚线分别代表在显著性0.05水平下的拟合关系及95%置信区间。SOC: 土壤有机碳; TN: 土壤全氮; 冬季指前一年12月至翌年2月。
Fig. 2 Relationships of species richness of early spring annual ephemeral plants with elevation (a), annual mean temperature (b), precipitation in winter (c), precipitation from February to May (d), precipitation anomaly from February to May since the Last Glacial Maximum (e), soil nutrients conditions (f, g) and aboveground biomass (h). The solid and dotted lines represented fitted relationship and its confidence interval at the significant level of 0.05. SOC and TN were abbreviations of soil organic carbon and total nitrogen, respectively. Here winter was defined from December to February.
图3 海拔(Ele)、气候(Clim, 包括冬季降水、2?5月降水、末次冰期以来2?5月降水变化距平和年平均温度)、土壤养分(Soil, 土壤pH和碳氮比)和地上生物量对一年生早春短命植物物种丰富度的影响途径和强度。图中蓝色和红色线条分别代表通径系数为正值和负值。*P < 0.05, **P < 0.01, ***P < 0.0001。
Fig. 3 Direct and indirect effects of elevation (Ele), climate (Clim, including precipitation in winter, precipitation from February to May, anomaly of precipitation from February to May since the Last Glacial Maximum and annual mean temperature), soil nutrient availability (Soil, including soil pH, and ratio of soil organic carbon to total nitrogen) and aboveground biomass (AGB) on species richness (SR) of early spring ephemeral plants. The blue and red line indicated the positive and negative path coefficients, respectively. * P< 0.05, **P< 0.01, ***P< 0.0001.
图4 海拔、气候、土壤养分和地上生物量对一年生早春短命植物物种丰富度的总影响效应
Fig. 4 Total effects of elevation, climate, soil nutrient availability and aboveground biomass on species richness of early spring annual ephemeral plants
[1] |
Abedi M, Bartelheimer M, Poschlod P (2013) Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients—A case study in dry sandy grasslands. Journal of Vegetation Science, 24,1074-1085.
DOI URL |
[2] |
Adler PB, Levine JM (2007) Contrasting relationships between precipitation and species richness in space and time. Oikos, 116,221-232.
DOI URL |
[3] |
Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O'Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Hille Ris Lambers J, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science, 333,1750-1753.
DOI URL |
[4] |
Agrawal AA, Ackerly DD, Adler F, Arnold AE, Cáceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Power M, Schemske D, Stachowicz J, Strauss S, Turner MG, Werner E (2007) Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 5,145-152.
DOI URL |
[5] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89,2140-2153.
DOI URL |
[6] | Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach. Springer, New York. |
[7] |
Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowing DJG, Merckx R, WallaceH, van Rooijen N, Goethem T, Bobbink R, Dorland E, Gaudnik C, Alard D, Corcket E, Muller S, Dise NB, Dupré C, Diekmann M, Honnay O (2014) Soil phosphorus constrains biodiversity across European grasslands. Global Change Biology, 20,3814-3822.
DOI PMID |
[8] |
Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature, 416,427-430.
DOI URL |
[9] | Editorial Committee of Flora of Xinjiang(1996) Flora of Xinjiang. Xinjiang Science and Technology and Hygiene Press, Urumqi. (in Chinese) |
[ 新疆植物志编辑委员会 (1996) 新疆植物志. 新疆科技卫生出版社, 乌鲁木齐.] | |
[10] |
Fan LL, Li Y, Tang LS, Ma J (2013) Combined effects of snow depth and nitrogen addition on ephemeral growth at the southern edge of the Gurbantunggut Desert, China. Journal of Arid Land, 5,500-510.
DOI URL |
[11] |
Fan LL, Ma J, Wu LF, Xu GQ, Li Y, Tang LS (2012) Response of the herbaceous layer to snow variability at the south margin of the Gurbantonggut Desert of China. Chinese Journal of Plant Ecology, 36,126-135. (in Chinese with English abstract)
DOI URL |
[ 范连连, 马健, 吴林峰, 徐贵青, 李彦, 唐立松 (2012) 古尔班通古特沙漠南缘草本层对积雪变化的响应. 植物生态学报, 36,126-135.]
DOI |
|
[12] |
Feng G, Mao LF, Sandel B, Swenson NG, Svenning JC (2016) High plant endemism in China is partially linked to reduced glacial-interglacial climate change. Journal of Biogeography, 43,145-154.
DOI URL |
[13] | Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long RJ, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang ZH, Stahlmann R, Stotz GC, Sugiyama SI, Szentes S, Thompson D, Tungalag R, UndrakhboldS, van Rooyen M, Wellstein C, Wilson JB, Zupo T, Carlyle CN (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349,302-305. |
[14] |
Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA (2000) Vascular plant species richness in Alaskan arctic tundra: The importance of soil pH. Journal of Ecology, 88,54-66.
DOI URL |
[15] | Grierson CS, Barnes SR, Chase MW, Clarke M, Grierson D, Edwards KJ, Jellis GJ, Jones JD, Knapp S, Oldroyd G, Poppy G, Temple P, Williams R, Bastow R (2011) One hundred important questions facing plant science research. New Phytologist, 192,6-12. |
[16] | Guo QF, Berry WL (1998) Species richness and biomass: Dissection of the hump-shaped relationships. Ecology, 79,2555-2559. |
[17] | Guo QF, Kelt DA, Sun ZY, Liu HX, Hu LJ, Ren H, Wen J (2013) Global variation in elevational diversity patterns. Scientific Reports, 3,3007. |
[18] | Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84,3105-3117. |
[19] | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43,227-248. |
[20] | Hudabaierdi MJT, Xu JG (2000) List of the Higher Plants in Xinjiang. Xinjiang University Press, Urumqi. (in Chinese) |
[ 米吉提·胡达拜尔地, 徐建国 (2000) 新疆高等植物检索表. 新疆大学出版社, 乌鲁木齐.] | |
[21] | Institute of Soil Science, Chinese Academy of Sciences (1978) Analysis of Soil Physicochemical Properties, Shanghai Scientific & Technical Publishers, Shanghai. (in Chinese) |
[ 中国科学院南京土壤研究所 (1978) 土壤理化分析. 上海科学技术出版社, 上海.] | |
[22] | Jarzyna MA, Jetz W (2018) Taxonomic and functional diversity change is scale dependent. Nature Communications, 9,2565. |
[23] | Körner C (2007) The use of ‘altitude' in ecological research. Trends in Ecology & Evolution, 22,569-574. |
[24] | Lan HY, Zhang FC (2008) Reviews on special mechanisms of adaptability of early-spring ephemeral plants to desert habitats in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 28,1478-1485. (in Chinese with English abstract) |
[ 兰海燕, 张富春 (2008) 新疆早春短命植物适应荒漠环境的机理研究进展. 西北植物学报, 28,1478-1485.] | |
[25] | Li QM, Zeng Y, Sun QM, Liu T, Han ZQ, Li YG, Liu HF (2014) Precipitation in May is a key factor to determinate the distribution of ephemeral plants in Gurbantünggüt Desert. Chinese Journal of Ecology, 33,2038-2045. (in Chinese with English abstract) |
[ 李巧梅, 曾勇, 孙钦明, 刘彤, 韩志全, 李勇冠, 刘华峰 (2014) 决定古尔班通古特沙漠短命植物分布的关键因子是5月降水. 生态学杂志, 33,2038-2045.] | |
[26] | Li XY (2000) Preliminary studying the characteristic of roots and relations between roots and environment of ephemerals in Xinjiang. Arid Zone Research, 17(3),28-34. (in Chinese with English abstract) |
[ 李向义 (2000) 新疆短命植物根系特征与立地条件的关系. 干旱区研究, 17(3),28-34.] | |
[27] | Lomolino MV (2001) Elevation gradients of species-density: Historical and prospective views. Global Ecology and Biogeography, 10,3-13. |
[28] | Lü LS, Cai HY, Yang Y, Wang ZH, Zeng H (2018) Geographic patterns and environmental determinants of gymnosperm species diversity in China. Biodiversity Science, 26,1133-1146. (in Chinese with English abstract) |
[ 吕丽莎, 蔡宏宇, 杨永, 王志恒, 曾辉 (2018) 中国裸子植物的物种多样性格局及其影响因子. 生物多样性, 26,1133-1146.] | |
[29] | Mao ZM, Zhang DM (1994) The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 11(3),1-26. (in Chinese with English abstract) |
[ 毛祖美, 张佃民 (1994) 新疆北部早春短命植物区系纲要. 干旱区研究, 11(3),1-26.] | |
[30] | Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum And Holocene Climate in CCSM3. Journal of Climate, 19,2526-2544. |
[31] | Palpurina S, WagnerV, von Wehrden H, Hájek M, Horsák M, Brinkert A, Hölzel N, Wesche K, Kamp J, Hájková P, Danihelka J, Lustyk P, Merunková K, Preislerová Z, Kočí M, Kubešová S, Cherosov M, Ermakov N, German D, Gogoleva P, Lashchinsky N, Martynenko V, Chytrý M (2017) The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 26,425-434. |
[32] | Pennisi E (2005) What determines species diversity? . Science, 309,90. |
[33] | Qiu J, Tan DY, Fan DY (2007) Characteristics of photosynthesis and biomass allocation of spring ephemerals in the Junggar Desert. Acta Phytoecologica Sinica, 31,883-891. (in Chinese with English abstract) |
[ 邱娟, 谭敦炎, 樊大勇 (2007) 准噶尔荒漠早春短命植物的光合特性及生物量分配特点. 植物生态学报, 31,883-891.] | |
[34] | R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. |
[35] | Rakotoarinivo M, Blach-Overgaard A, Baker WJ, Dransfield J, Moat J, Svenning JC (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar:A tropical biodiversity hotspot. Proceedings of the Royal Society B: Biological Sciences, 280,20123048. |
[36] | Sanchez G (2013) PLS Path Modeling with R. Trowchez Editions, Berkeley, California. |
[37] | Shi ZT, Song YG, An ZS (2006) Evolution of Gurbantunggut Desert recorded by Tianshan Loess. Journal of Desert Research, 26,675-679. (in Chinese with English abstract) |
[ 史正涛, 宋友桂, 安芷生 (2006) 天山黄土记录的古尔班通古特沙漠形成演化. 中国沙漠, 26,675-679.] | |
[38] | Song YY, Zhou CB, Zhang WH (2011) Vegetation coverage, species richness, and dune stability in the southern part of Gurbantünggüt Desert. Ecological Research, 26,79-86. |
[39] | Sun Y, Zhang T, Tian CY, Li XL, Feng G (2009) Response of grass growth and productivity to enhanced water input in ephemeral desert grassland in Gurbantunggut Desert. Acta Ecologica Sinica, 29,1859-1868. (in Chinese with English abstract) |
[ 孙羽, 张涛, 田长彦, 李晓林, 冯固 (2009) 增加降水对荒漠短命植物当年牧草生长及群落结构的影响. 生态学报, 29,1859-1868.] | |
[40] | Tang ZY, Wang ZH, Fang JY (2009) Historical hypothesis in explaining spatial patterns of species richness. Biodiversity Science, 17,635-643. (in Chinese with English abstract) |
[ 唐志尧, 王志恒, 方精云 (2009) 生物多样性分布格局的地史成因假说. 生物多样性, 17,635-643.] | |
[41] | Tao Y, Liu YB, Wu GL, Zhang YM (2016) Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China. Acta Prataculturae Sinica, 25(7),13-23. (in Chinese with English abstract) |
[ 陶冶, 刘耀斌, 吴甘霖, 张元明 (2016) 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局. 草业学报, 25(7),13-23.] | |
[42] | Wang JJ, Pan FY, Soininen J, Heino J, Shen J (2016) Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nature Communications, 7,13960. |
[43] | Wang L, Liu C, Alves DG, Frank DA, Wang DL (2015) Plant diversity is associated with the amount and spatial structure of soil heterogeneity in meadow steppe of China. Landscape Ecology, 30,1713-1721. |
[44] | Wang XQ, Jiang J, Lei JQ, Zhang WM, Qian YB (2003) The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geographica Sinica, 58,598-605. (in Chinese with English abstract) |
[ 王雪芹, 蒋进, 雷加强, 张伟民, 钱亦兵 (2003) 古尔班通古特沙漠短命植物分布及其沙面稳定意义. 地理学报, 58,598-605.] | |
[45] | Wang ZH, Fang JY, Tang ZY, Lin X (2012) Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants. Ecography, 35,1124-1133. |
[46] | Yuan SF, Tang HP (2010) Patterns of ephemeral plant communities and their adaptations to temperature and precipitation regimes in Dzungaria Desert, Xinjiang. Biodiversity Science, 18,346-354. (in Chinese with English abstract) |
[ 袁素芬, 唐海萍 (2010) 新疆准噶尔荒漠短命植物群落特征及其水热适应性. 生物多样性, 18,346-354.] | |
[47] | Yuan SF, Tang HP, Zhang HF (2015) On the relationships between intra-annual variation of ephemeral synusia and hydrothermal conditions. Arid Zone Research, 32,941-946. (in Chinese with English abstract) |
[ 袁素芬, 唐海萍, 张宏锋 (2015) 短命植物层群落年内变化与水热条件的关系. 干旱区研究, 32,941-946.] | |
[48] | Zeng Y, Liu T, Zhou XB, Sun QM, Han ZQ, Liu K (2016) Effects of climate change on plant composition and diversity in the Gurbantünggüt Desert of northwestern China. Ecological Research, 31,427-439. |
[1] | 张瑶, 孙君瑶, 李伟. 雅鲁藏布江流域不同海拔梯度下消落区植被NDVI的时空变化趋势及驱动因素[J]. 生物多样性, 2024, 32(5): 23432-. |
[2] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[3] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[4] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[5] | 孟敬慈, 王国栋, 曹光兰, 胡楠林, 赵美玲, 赵延彤, 薛振山, 刘波, 朴文华, 姜明. 中国芦苇沼泽植物物种丰富度分布格局及其驱动因素[J]. 生物多样性, 2024, 32(2): 23194-. |
[6] | 王丽媛, 胡慧建, 姜杰, 胡一鸣. 南岭哺乳类和鸟类物种丰富度空间分布格局及其影响因子[J]. 生物多样性, 2024, 32(1): 23026-. |
[7] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[8] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[9] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[10] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[11] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[12] | 侯东敏, 辉洪, 张栋儒, 肖能文, 饶定齐. 云岭山脉云南地区两栖爬行类动物多样性[J]. 生物多样性, 2023, 31(2): 22316-. |
[13] | 林木青, 张应明, 欧阳芳, 束祖飞, 朱朝东, 肖治术. 广东车八岭国家级自然保护区独栖性胡蜂多样性空间分布特征及其对环境因子的响应[J]. 生物多样性, 2023, 31(2): 22310-. |
[14] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[15] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn