生物多样性 ›› 2019, Vol. 27 ›› Issue (6): 595-606. DOI: 10.17520/biods.2019085
张晓玲1,2,李亦超2,王芸芸2,蔡宏宇2,曾辉1,*(),王志恒2,*(
)
收稿日期:
2019-03-18
接受日期:
2019-05-06
出版日期:
2019-06-20
发布日期:
2019-06-20
通讯作者:
曾辉,王志恒
基金资助:
Zhang Xiaoling1,2,Li Yichao2,Wang Yunyun2,Cai Hongyu2,Zeng Hui1,*(),Wang Zhiheng2,*(
)
Received:
2019-03-18
Accepted:
2019-05-06
Online:
2019-06-20
Published:
2019-06-20
Contact:
Zeng Hui,Wang Zhiheng
摘要:
茶是对气候变化敏感的重要经济作物, 评价全球气候变化对茶分布和生产的影响对相关国家经济发展和茶农的生计至关重要。本研究基于全球858个茶分布点和6个气候因子数据, 利用物种分布模型预测全球茶的潜在适宜分布区及其在2070年的不同温室气体排放情景(RCP2.6和RCP8.5)下的变化。结果表明: 当前茶在五大洲均有适宜分布区, 主要集中在亚洲、非洲和南美洲, 并且最冷季平均温和最暖季降水量主导了茶的分布。预计2070年, 茶的适宜分布区变化在不同的大洲、国家和气候情景间将存在差异。具体来说, 茶的适宜分布区总面积将会减少, 减少的区域主要位于低纬度地区, 而中高纬度地区的适宜分布区将扩张, 由此可能导致茶的适宜分布区向北移动; 重要的产茶国中, 阿根廷、缅甸、越南等茶适宜分布区面积会减少57.8%-95.8%, 而中国和日本的适宜分布面积则会增加2.7%-31.5%。未来全球新增的适宜分布区中, 约有68%的地区土地覆盖类型为自然植被, 因此可能导致新茶树种植园的开垦和自然植被及生物多样性保护产生冲突。
张晓玲,李亦超,王芸芸,蔡宏宇,曾辉,王志恒 (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27, 595-606. DOI: 10.17520/biods.2019085.
Zhang Xiaoling,Li Yichao,Wang Yunyun,Cai Hongyu,Zeng Hui,Wang Zhiheng (2019) Influence of future climate change in suitable habitats of tea in different countries. Biodiversity Science, 27, 595-606. DOI: 10.17520/biods.2019085.
环境变量 Environmental variables | 平均重要性 Mean importance |
---|---|
最冷季平均温 Mean temperature of coldest quarter | 0.36 |
最暖季降水量 Precipitation of warmest quarter | 0.27 |
降水季节性 Precipitation seasonality | 0.09 |
平均气温日较差 Mean diurnal temperature range | 0.06 |
最暖月最高温 Max temperature of warmest month | 0.04 |
最干月降水量 Precipitation of driest month | 0.03 |
土壤酸碱度 Soil pH | 0.00 |
表1 7个环境变量的平均重要性
Table 1 Mean importance of seven environmental variables
环境变量 Environmental variables | 平均重要性 Mean importance |
---|---|
最冷季平均温 Mean temperature of coldest quarter | 0.36 |
最暖季降水量 Precipitation of warmest quarter | 0.27 |
降水季节性 Precipitation seasonality | 0.09 |
平均气温日较差 Mean diurnal temperature range | 0.06 |
最暖月最高温 Max temperature of warmest month | 0.04 |
最干月降水量 Precipitation of driest month | 0.03 |
土壤酸碱度 Soil pH | 0.00 |
图2 用于物种分布模型构建的茶分布点和预测的现在茶潜在分布(世界地图来源于https://www.naturalearthdata.com/down loads/50m-physical-vectors/)
Fig. 2 Tea occurrence points used for constructing species distribution model and the predicted current potential distribution of tea
图3 预测的2070年不同气候情景下茶适宜分布区变化(世界地图来源于https://www.naturalearthdata.com/downloads/50m -physical-vectors/)
Fig. 3 Predicted suitable range shifts of tea by 2070s under different climate scenarios
气候情景 Scenarios | 新增的分布区 Gain | 丧失的分布区 Loss | 适宜分布面积的净变化 Net changes in suitable area |
---|---|---|---|
RCP2.6 | 9.1 | 18.6 | -9.5 |
RCP8.5 | 14.2 | 31.1 | -16.9 |
表2 预测2070年不同气候情景下茶适宜分布区的变化(%)
Table 2 Predicted suitable area changes of tea (%) for the 2070s
气候情景 Scenarios | 新增的分布区 Gain | 丧失的分布区 Loss | 适宜分布面积的净变化 Net changes in suitable area |
---|---|---|---|
RCP2.6 | 9.1 | 18.6 | -9.5 |
RCP8.5 | 14.2 | 31.1 | -16.9 |
国家 Countries | 当前适宜分布区 Current suitable area (km2) | 适宜分布面积变化 Changes in suitable area (km2) | 适宜分布面积变化比例 Changes in suitable area (%) | 产量 (2016年) Production (t) | ||
---|---|---|---|---|---|---|
RCP2.6 | RCP8.5 | RCP2.6 | RCP8.5 | |||
中国 China | 2,607,924 | 69,384 | 135,088 | 2.7 | 5.2 | 2,414,802 |
印度 India | 315,323 | -9,241 | -25,162 | -2.9 | -8.0 | 1,252,174 |
肯尼亚 Kenya | 17,994 | -4,470 | -5,834 | -24.8 | -32.4 | 473,000 |
斯里兰卡 Sri Lanka | 9,356 | -232 | -3,323 | -2.5 | -35.5 | 349,308 |
土耳其 Turkey | 2,765 | 654 | -1,619 | 23.7 | -58.6 | 243,000 |
越南 Vietnam | 75,599 | -43,657 | -55,005 | -57.8 | -72.8 | 240,000 |
印度尼西亚 Indonesia | 260,214 | -31,551 | -94,931 | -12.1 | -36.5 | 144,015 |
缅甸 Myanmar | 38,221 | -28,938 | -35,895 | -75.7 | -93.9 | 102,404 |
阿根廷 Argentina | 32,876 | -31,085 | -31,503 | -94.6 | -95.8 | 89,609 |
日本 Japan | 279,395 | 27,910 | 87,979 | 10.0 | 31.5 | 80,200 |
表3 未来不同气候情景下主要产茶国家的适宜分布区面积变化
Table 3 Changes of suitable area in major tea-producing countries under different future climate scenarios
国家 Countries | 当前适宜分布区 Current suitable area (km2) | 适宜分布面积变化 Changes in suitable area (km2) | 适宜分布面积变化比例 Changes in suitable area (%) | 产量 (2016年) Production (t) | ||
---|---|---|---|---|---|---|
RCP2.6 | RCP8.5 | RCP2.6 | RCP8.5 | |||
中国 China | 2,607,924 | 69,384 | 135,088 | 2.7 | 5.2 | 2,414,802 |
印度 India | 315,323 | -9,241 | -25,162 | -2.9 | -8.0 | 1,252,174 |
肯尼亚 Kenya | 17,994 | -4,470 | -5,834 | -24.8 | -32.4 | 473,000 |
斯里兰卡 Sri Lanka | 9,356 | -232 | -3,323 | -2.5 | -35.5 | 349,308 |
土耳其 Turkey | 2,765 | 654 | -1,619 | 23.7 | -58.6 | 243,000 |
越南 Vietnam | 75,599 | -43,657 | -55,005 | -57.8 | -72.8 | 240,000 |
印度尼西亚 Indonesia | 260,214 | -31,551 | -94,931 | -12.1 | -36.5 | 144,015 |
缅甸 Myanmar | 38,221 | -28,938 | -35,895 | -75.7 | -93.9 | 102,404 |
阿根廷 Argentina | 32,876 | -31,085 | -31,503 | -94.6 | -95.8 | 89,609 |
日本 Japan | 279,395 | 27,910 | 87,979 | 10.0 | 31.5 | 80,200 |
图4 未来气候变化下, 茶适宜分布区面积变化最多的前10个国家。(a)适宜分布区面积减少; (b)适宜分布区面积增加。
Fig. 4 Top ten countries with the largest changes in suitable area for tea under different future climate scenarios. (a) Loss suitable area; (b) Gain suitable area.
土地覆盖类型 Land cover | 新增适宜分布区的来源 Source of newly suitable areas (%) | |
---|---|---|
RCP2.6 | RCP8.5 | |
森林 Forest | 46.9 | 41.5 |
灌木 Shrub | 5.4 | 8.0 |
草地 Grassland | 15.9 | 19.4 |
耕地 Farmland | 20.0 | 16.4 |
建设用地 Urban | 0.5 | 0.3 |
其他 Others | 11.2 | 14.4 |
表4 不同未来气候情景下新增茶适宜分布区的来源
Table 4 The source of newly suitable areas for tea cultivation under different future climate scenarios
土地覆盖类型 Land cover | 新增适宜分布区的来源 Source of newly suitable areas (%) | |
---|---|---|
RCP2.6 | RCP8.5 | |
森林 Forest | 46.9 | 41.5 |
灌木 Shrub | 5.4 | 8.0 |
草地 Grassland | 15.9 | 19.4 |
耕地 Farmland | 20.0 | 16.4 |
建设用地 Urban | 0.5 | 0.3 |
其他 Others | 11.2 | 14.4 |
[1] |
Ahmed S, Stepp JR, Orians C, Griffin T, Matyas C, Robbat A, Cash S, Xue D, Long C, Unachukwu U, Buckley S, Small D, Kennelly E ( 2014) Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE, 9, e109126.
DOI URL |
[2] |
Allouche O, Tsoar A, Kadmon R ( 2006) Assessing the accuracy of species distribution models: Prevalence, Kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
DOI URL |
[3] |
Araújo MB, Peterson AT ( 2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539.
DOI URL |
[4] |
Barbet-Massin M, Jiguet F, Albert CH, Thuiller W ( 2012) Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3, 327-338.
DOI URL |
[5] |
Bartholome E, Belward AS ( 2005) GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26, 1959-1977.
DOI URL |
[6] |
Campbell BM, Vermeulen SJ, Aggarwal PK, Corner-Dolloff C, Girvetz E, Loboguerrero AM, Ramirez-Villegas J, Rosenstock T, Sebastian L, Thornton PK, Wollenberg E ( 2016) Reducing risks to food security from climate change. Global Food Security, 11, 34-43.
DOI URL |
[7] |
Carr M ( 1972) The climatic requirements of the tea plant: A review. Experimental Agriculture, 8, 1-14.
DOI URL |
[8] | Chang K, Brattlof M ( 2015) Socio-Economic Implications of Climate Change for Tea Producing Countries. Rome, FAO. |
[9] |
Chen L, Zhou ZX ( 2005) Variations of main quality components of tea genetic resources [Camellia sinensis (l.) O. Kuntze] preserved in the China National Germplasm Tea Repository. Plant Foods for Human Nutrition, 60, 31-35.
DOI URL |
[10] | Chen ZM, Chen L ( 2012) Delicious and healthy tea: An overview. In: Global Tea Breeding. Advanced Topics in Science and Technology in China (eds Chen L, Apostolides Z, Chen ZM), pp. 1-11. Springer, Berlin, Heidelberg. |
[11] |
Cobos ME, Peterson AT, Barve N, Osorio-Olvera L ( 2019) kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281.
DOI URL |
[12] |
Davis AP, Gole TW, Baena S, Moat J ( 2012) The impact of climate change on indigenous Arabica coffee (Coffea arabica): Predicting future trends and identifying priorities. PLoS ONE, 7, e47981.
DOI URL |
[13] |
De Costa W, Mohotti AJ, Wijeratne MA ( 2007) Ecophysiology of tea. Brazilian Journal of Plant Physiology, 19, 299-332.
DOI URL |
[14] |
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S ( 2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46.
DOI URL |
[15] |
Duncan J, Saikia S, Gupta N, Biggs E ( 2016) Observing climate impacts on tea yield in Assam, India. Applied Geography, 77, 64-71.
DOI URL |
[16] | Eden T ( 1965) Tea Tropical Agriculture Series. Longman, London. |
[17] | Eitzinger A, Läderach P, Quiroga A, Pantoja A, Gordon J ( 2011 a) Future Climate Scenarios for Kenya’s Tea Growing Areas. International Center for Tropical Agriculture (CIAT), Cali, Colombia. |
[18] | Eitzinger A, Läderach P, Quiroga A, Pantoja A, Gordon J ( 2011 b) Future Climate Scenarios for Uganda’s Tea Growing Areas. International Center for Tropical Agriculture (CIAT), Cali, Colombia. |
[19] | Food and Agriculture Organization of the United Nations ( FAO) ( 2016) FAOSTAT Database. http://www.fao.org/ faostat/en/#data. (accessed on 2018-12-24) |
[20] |
Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W ( 2010) Predicting potential distributions of invasive species: Where to go from here? Diversity and Distributions, 16, 331-342.
DOI URL |
[21] | Han W, Li X, Yan P, Zhang L, Ahammed GJ ( 2018) Tea cultivation under changing climatic conditions. In: Global Tea Science (eds Sharma VS, Kumudini GMT), pp. 455-472. Burleigh Dodds Science Publishing Limited, Cambridge. |
[22] |
Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ ( 2013) Climate change, wine, and conservation. Proceedings of the National Academy of Sciences, USA, 110, 6907-6912.
DOI URL |
[23] | Huang SB ( 1981) Agrometeorological index for tea growth. Chinese Journal of Agrometeorology, 2(3), 54-58. (in Chinese) |
[ 黄寿波 ( 1981) 茶树生长的农业气象指标. 农业气象, 2(3), 54-58.] | |
[24] | Huang SB, Fan XH, Yao GK ( 1993) Microclimate in tea tree crown and its effect on growth, development and biochemical composition of new shoots. Chinese Journal of Applied Ecology, 4, 99-101. (in Chinese with English abstract) |
[ 黄寿波, 范兴海, 姚国坤 ( 1993) 丛栽茶树树冠小气候及其对新梢生育和生化成分的影响. 应用生态学报, 4, 99-101.] | |
[25] |
Imbach P, Fung E, Hannah L, Navarro-Racines CE, Roubik DW, Ricketts TH, Harvey CA, Donatti CI, Laderach P, Locatelli B, Roehrdanz PR ( 2017) Coupling of pollination services and coffee suitability under climate change. Proceedings of the National Academy of Sciences, USA, 114, 10438-10442.
DOI URL |
[26] | IPCC( 2013) Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[27] | Jin ZF, Yang D, Yao YP, Li RZ, Wang ZH ( 2016) Assessment on climatic potential productivity of tea in Zhejiang Province. Chinese Journal of Ecology, 35, 1791-1798. (in Chinese with English abstract) |
[ 金志凤, 杨栋, 姚益平, 李仁忠, 王治海 ( 2016) 浙江省茶叶气候生产潜力评估. 生态学杂志, 35, 1791-1798.] | |
[28] | Jin ZF, Ye JG, Yang ZQ, Sun R, Hu B, Li RZ ( 2014) Climate suitability for tea growing in Zhejiang Province. Chinese Journal of Applied Ecology, 25, 967-973. (in Chinese with English abstract) |
[ 金志凤, 叶建刚, 杨再强, 孙睿, 胡波, 李仁忠 ( 2014) 浙江省茶叶生长的气候适宜性. 应用生态学报, 25, 967-973.] | |
[29] |
Larson C ( 2015) Reading the tea leaves for effects of climate change. Science, 348, 953-954.
DOI URL |
[30] |
Li HM, Ma YX, Liu WJ, Liu WJ ( 2012) Soil changes induced by rubber and tea plantation establishment: Comparison with tropical rain forest soil in Xishuangbanna, SW China. Environmental Management, 50, 837-848.
DOI URL |
[31] | Liaw A, Wiener M ( 2002) Classification and regression by randomForest. R News, 2, 18-22. |
[32] |
Lobell DB, Schlenker W, Costa-Roberts J ( 2011) Climate trends and global crop production since 1980. Science, 333, 616-620.
DOI URL |
[33] | McCullagh P, Nelder JA ( 1989) Generalized Linear Models. CRC Press, Boca Raton, USA. |
[34] |
Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS ( 2004) Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell, Tissue and Organ Culture, 76, 195-254.
DOI URL |
[35] | Mukhopadhyay M, Mondal TK ( 2017) Cultivation, Improvement, and Environmental Impacts of Tea. Oxford University Press, Oxford. |
[36] | Nemec-Boehm RL, Cash SB, Anderson BT, Ahmed S, Griffin TS, Orians CM, Robbat AJ, Stepp RA, Han WY ( 2014) Climate change, the monsoon, and tea yields in China. Agricultural and Applied Economics Association’s 2014 AAEA Annual Meeting, Minnesota. |
[37] |
Nowogrodzki A ( 2019) How climate change might affect tea. Nature, 566, S10.
DOI |
[38] |
Ochieng J, Kirimi L, Mathenge M ( 2016) Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS-Wageningen Journal of Life Sciences, 77, 71-78.
DOI URL |
[39] |
Ovalle-Rivera O, Laderach P, Bunn C, Obersteiner M, Schroth G ( 2015) Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE, 10, e0124155.
DOI URL |
[40] |
Owuor PO, Wachira FN, Ng’etich WK ( 2010) Influence of region of production on relative clonal plain tea quality parameters in Kenya. Food Chemistry, 119, 1168-1174.
DOI URL |
[41] | Parry M, Canziani O, Palutikof J, van der Linden PJ, Hanson CE ( 2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge. |
[42] |
Pearson RG, Dawson TP ( 2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
DOI URL |
[43] |
Peterson AT, Papeş M, Soberón J ( 2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63-72.
DOI URL |
[44] |
Phillips SJ, Anderson RP, Schapire RE ( 2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
DOI URL |
[45] |
Pineda E, Lobo JM ( 2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. Journal of Animal Ecology, 78, 182-190.
DOI URL |
[46] | R Core Team ( 2017) R: A Language and Environment for Statistical Computing. https://www.R-project.org/. ( accessed on 2019-01-13) |
[47] |
Schmidhuber J, Tubiello FN ( 2007) Global food security under climate change. Proceedings of the National Academy of Sciences, USA, 104, 19703-19708.
DOI URL |
[48] |
Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L ( 2016) Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 556, 231-241.
DOI URL |
[49] |
Thuiller W, Lafourcade B, Engler R, Araújo MB ( 2009) BIOMOD—A platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
DOI URL |
[50] |
Wijeratne M, Anandacoomaraswamy A, Amarathunga M, Ratnasiri J, Basnayake B, Kalra N ( 2007) Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 35, 119-126.
DOI URL |
[51] | Wu TW, Song LC, Li WP, Wang ZZ, Zhang H, Xin XG, Zhang YW, Zhang L, Li JL, Wu FH ( 2014) An overview of BCC climate system model development and application for climate change studies. Journal of Meteorological Research, 28, 34-56. |
[52] |
Yan YJ, Li Y, Wang WJ, He JS, Yang RH, Wu HJ, Wang XL, Jiao L, Tang ZY, Yao YJ ( 2017) Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation, 206, 143-150.
DOI URL |
[53] | Zhu GP, Fan JY, Wang ML, Chen M, Qiao HJ ( 2017) The importance of the shape of receiver operating characteristic (ROC) curve in ecological model evaluation—Case study of Hlyphantria cunea. Journal of Biosafety, 26, 184-190. (in Chinese with English abstract) |
[ 朱耿平, 范靖宇, 王梦琳, 陈敏, 乔慧捷 ( 2017) ROC曲线形状在生态位模型评价中的重要性——以美国白蛾为例. 生物安全学报, 26, 184-190.] |
[1] | 马海港 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[2] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[3] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[4] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[5] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[6] | 李爽, 朱彦鹏, 曹萌, 李俊生. 我国生物多样性保护标准体系现状、问题与建议[J]. 生物多样性, 2022, 30(11): 22117-. |
[7] | 张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 2022, 30(10): 22609-. |
[8] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[9] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[10] | 高梅香, 刘启龙, 朱家祺, 赵博宇, 杜嘉, 吴东辉. 中国农田土壤动物长期监测样地科学调查监测的实施方法[J]. 生物多样性, 2022, 30(1): 21265-. |
[11] | 戴尊, 陈星, 张建行, 朱毛洁, 宋坤, 邢诗晨, 涂淑雯, 邹璐, 雷祖培, 李宏庆, 王健. 浙江乌岩岭国家级自然保护区叶附生苔类及附主植物多样性[J]. 生物多样性, 2022, 30(1): 21229-. |
[12] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[13] | 万霞, 张丽兵. 2020年发表的全球维管植物新种[J]. 生物多样性, 2021, 29(8): 1003-1010. |
[14] | 王琴, 陈远, 禹洋, 向左甫. 动物对孢子植物的传播模式及进化意义[J]. 生物多样性, 2021, 29(7): 995-1001. |
[15] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn