生物多样性 ›› 2018, Vol. 26 ›› Issue (7): 655-666. DOI: 10.17520/biods.2018060
所属专题: 青藏高原生物多样性与生态安全; 物种形成与系统进化
• 研究报告: 植物多样性 • 下一篇
收稿日期:
2018-02-21
接受日期:
2018-04-24
出版日期:
2018-07-20
发布日期:
2018-09-26
通讯作者:
周淑荣
作者简介:
# 共同第一作者
基金资助:
Dexin Sun, Xiang Liu, Shurong Zhou*()
Received:
2018-02-21
Accepted:
2018-04-24
Online:
2018-07-20
Published:
2018-09-26
Contact:
Zhou Shurong
About author:
# Co-first authors
摘要:
已有大量研究利用功能性状或系统发育来推断群落构建机制, 然而不同过程可能会导致相似的格局。本文基于对甘南高寒草甸植物功能群去除处理后群落恢复过程的跟踪调查, 对比了物种多样性、功能多样性和系统发育多样性的动态变化, 并分析了物种定殖与消失过程对功能多样性和系统发育多样性变化的影响。结果表明: 去除不同数量功能群的群落中: (1)包括物种丰富度(SR)、Shannon-Wiener指数(H°)和Simpson指数(D)在内的传统物种多样性均随时间快速上升并与自然群落趋同, 不同群落的均匀度指数(J)随时间呈增加趋势并趋于相似; 功能多样性(FD)与系统发育多样性(PD)呈现出与物种多样性相似的动态变化趋势, 而平均配对距离(MPD/MPDa、MFD/MFDa)则向中等程度聚集。(2)不同群落的功能群和物种组成在短期内均恢复到与自然群落非常相似的程度。(3)物种定殖与消失过程的功能格局是群落恢复过程中趋同效应的主要驱动力。本研究揭示了高寒草甸植物功能群去除停止后群落短期内快速恢复的过程, 说明在小尺度且周边具有大范围未退化草甸的情况下, 无论物种多样性、功能多样性还是系统发育多样性都具有较快的恢复能力, 同时说明了利用群落系统发育多样性格局来推断群落构建机制的局限性。
孙德鑫, 刘向, 周淑荣 (2018) 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建. 生物多样性, 26, 655-666. DOI: 10.17520/biods.2018060.
Dexin Sun, Xiang Liu, Shurong Zhou (2018) Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow. Biodiversity Science, 26, 655-666. DOI: 10.17520/biods.2018060.
图1 群落恢复过程中物种多样性(平均数 ± 标准误)变化。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。
Fig. 1 Changes in species diversity (mean ± SE) during restoration. Legends show the combination of functional groups: Poaceae and Cyperaceae (A), Asteraceae (B), Fabaceae (C), others (D) and rare species (X).
图2 群落恢复过程中功能多样性(平均数 ± 标准误)变化。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。
Fig. 2 Changes in functional diversity (mean ± SE) during restoration. Legends show the combination of functional groups: Poaceae and Cyperaceae (A), Asteraceae (B), Fabaceae (C), others (D) and rare species (X).
图3 群落恢复过程中系统发育多样性(平均数 ± 标准误)变化。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。
Fig. 3 Changes in phylogenetic diversity (mean ± SE) during restoration. Legends show the combination of functional groups: Poaceae and Cyperaceae (A), Asteraceae (B), Fabaceae (C), others (D) and rare species (X).
图4 群落恢复过程中不同功能群相对多度变化。图例表示功能群: 禾本科与莎草科(A)、菊科(B)、豆科(C)以及杂草(D)。
Fig. 4 Changes in relative abundance of different functional groups during restoration. Legends show functional groups: Poaceae and Cyperaceae (A), Asteraceae (B), Fabaceae (C), and others (D).
图6 群落恢复过程中系统发育和功能性状格局(平均数 ± 标准误)。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。
Fig. 6 The patterns of phylogeny and functional trait during restoration (mean ± SE). Legends show the combination of functional groups: Poaceae and Cyperaceae (A), Asteraceae (B), Fabaceae (C), others (D) and rare species (X).
图7 消失种/定殖种与保留种平均配对距离/平均配对功能距离标准化效应值与群落初始系统发育多样性/功能多样性之间关系
Fig. 7 The relationship between SES.βMPD / SES.βMFD of extinct species / colonists to residents and initial phylogenetic diversity / functional diversity
[1] | Bhaskar R, Dawson TE, Balvanera P (2014) Community assembly and functional diversity along succession post-management. Functional Ecology, 28, 1256-1265. |
[2] | Brakenhielm S, Liu Q (1998) Long-term effects of clear-felling on vegetation dynamics and species diversity in a boreal pine forest. Biodiversity and Conservation, 7, 207-220. |
[3] | Cadotte MW (2017) Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 20, 989-996. |
[4] | Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. |
[5] | Chase JM (2003) Community assembly: When should history matter? Oecologia, 136, 489-498. |
[6] | Chazdon RL (2003) Tropical forest recovery: Legacies of human impact and natural disturbances. Perspectives in Plant Ecology,Evolution and Systematics, 6, 51-71. |
[7] | Che YD, Liu MX, Li LR, Jiao J, Xiao W (2017) Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny. Chinese Journal of Plant Ecology, 41, 1157-1167. (in Chinese with English abstract) |
[车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫 (2017) 基于功能性状及系统发育的亚高寒草甸群落构建. 植物生态学报, 41, 1157-1167.] | |
[8] | Clements FE (1916) Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington, DC. |
[9] | Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111, 1119-1144. |
[10] | Deng L, Shangguan Z, Sweeney S (2015) “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China. Scientific Reports, 4, 7039. |
[11] | Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserratmarti G, Grime JP, Zarrinkamar F, Asri Y (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295-304. |
[12] | Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
[13] | Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology, 92, 1573-1581. |
[14] | Fukami T, Nakajima M (2011) Community assembly: Alternative stable states or alternative transient states? Ecology Letters, 14, 973-984. |
[15] | Fukami T, Bezemer TM, Mortimer SR, der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8, 1283-1290. |
[16] | Gleason HA (1927) Further views on the succession-concept. Ecology, 8, 299-326. |
[17] | Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M (2012) Ecological assembly rules in plant communities—Approaches, patterns and prospects. Biological Reviews, 87, 111-127. |
[18] | Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307-321. |
[19] | Holl KD (1999) Factors limiting tropical rain forest regeneration in abandoned pasture: Seed rain, seed germination, microclimate, and soil. Biotropica, 31, 229-242. |
[20] | Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science, 277, 1302-1305. |
[21] | Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464. |
[22] | Kress WJ, Erickson DL, Swenson NG, Thompson J, Uriarte M, Zimmerman JK (2010) Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS ONE, 5, e15409. |
[23] | Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X Version 2.0. Bioinformatics, 23, 2947-2948. |
[24] | Li S, Cadotte MW, Meiners SJ, Hua Z, Jiang L, Shu W (2015) Species colonisation, not competitive exclusion, drives community overdispersion over long-term succession. Ecology Letters, 18, 964-973. |
[25] | Liu J, Zhang X, Song F, Zhou S, Cadotte MW, Bradshaw CJA (2015) Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology, 96, 176-183. |
[26] | Liu X, Lü S, Sun D, Bradshaw CJA, Zhou S (2017) Species decline under nitrogen fertilization increases community-level competence of fungal diseases. Proceedings of the Royal Society B: Biological Sciences, 284, 20162621. |
[27] | Luh HK, Pimm SL (1993) The assembly of ecological communities: A minimalis approach. Journal of Animal Ecology, 62, 749-765. |
[28] | Lü S, Liu X, Venail P, Zhou S (2017) Functional dissimilarity, not phylogenetic relatedness, determines interspecific interactions among plants in the Tibetan alpine meadows. Oikos, 126, 381-388. |
[29] | Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093. |
[30] | Miao N, Zhou ZL, Shi ZM, Feng QH (2014) Successional dynamics of community structure and species diversity after clear-cutting of faxon fir (Abies faxoniana) forest stands. Acta Ecologica Sinica, 34, 3661-3671. (in Chinese with English abstract) |
[缪宁, 周珠丽, 史作民, 冯秋红 (2014) 岷江冷杉林皆伐后次生群落结构和物种多样性的演替动态. 生态学报, 34, 3661-3671.] | |
[31] | Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290. |
[32] | Pascarella JB, Aide TM, Serrano MI, Zimmerman JK (2000) Land-use history and forest regeneration in the Cayey Mountains, Puerto Rico. Ecosystems, 3, 217-228. |
[33] | Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proceedings of the Royal Society of London B: Biological Sciences, 279, 749-758. |
[34] | Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411. |
[35] | Pielou EC (1966) Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology, 10, 370-383. |
[36] | Platt WJ, Connell JH (2003) Natural disturbances and directional replacement of species. Ecological Monographs, 73, 507-522. |
[37] | Purschke O, Schmid BC, Sykes MT, Poschlod P, Michalski SG, Durka W, Kühn I, Winter M, Prentice HC (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. Journal of Ecology, 101, 857-866. |
[38] | R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna, Austria. . (accessed on 2017-11-30) |
[39] | Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. |
[40] | Samuels CL, Drake JA (1997) Divergent perspectives on community convergence. Trends in Ecology & Evolution, 12, 427-432. |
[41] | Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Molecular Biology and Evolution, 19, 101-109. |
[42] | Schliep KP (2011) phangorn: Phylogenetic analysis in R. Bioinformatics, 27, 592-593. |
[43] | Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379-423. |
[44] | Simpson EH (1949) Measurement of diversity. Nature, 163, 688. |
[45] | Valientebanuet A, Verdu M (2013) Plant facilitation and phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 347-366. |
[46] | Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D (2015) Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615-626. |
[47] | Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 2, 95-113. |
[48] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 475-505. |
[49] | Yang YB, Xin XJ, Aide XC, Yang X, Wang SM, Chu CJ, Ren ZW, Wang G (2010) Plant diversity variations in zokor-mound communities along a successional stage in sub-alpine meadow. Acta Prataculturae Sinica, 19(1),14-20 (in Chinese with English abstract) |
[杨莹博, 辛小娟, 艾得协措, 杨雪, 王绍美, 储诚进, 任正炜, 王刚 (2010) 鼢鼠土丘植被恢复演替过程中的物种多样性变化. 草业学报, 19(1), 14-20.] | |
[50] | Zhao LY, Gao DD, Xiong BQ, Chen T, Li YQ, Li FR (2017) Relationship between the aboveground biomass and species diversity of sandy communities during the process of restoring succession in the Horqin Sandy Land, China. Acta Ecologica Sinica, 37, 4108-4117. (in Chinese with English abstract) |
[赵丽娅, 高丹丹, 熊炳桥, 陈涛, 李艳蔷, 李锋瑞 (2017) 科尔沁沙地恢复演替进程中群落物种多样性与地上生物量的关系. 生态学报, 37, 4108-4117.] |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[3] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[4] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[5] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[6] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[7] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[8] | 刘昱齐, 刘晶岚, 樊晓丽, 胡宜深, 郭鸿筱, 薛凡. 鸟鸣多样性感知与声景感知恢复性: 鸟鸣音频和科普的干预[J]. 生物多样性, 2024, 32(1): 23230-. |
[9] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[10] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[11] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[12] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[13] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[14] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[15] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn