生物多样性 ›› 2010, Vol. 18 ›› Issue (5): 497-508. DOI: 10.3724/SP.J.1003.2010.497
收稿日期:
2009-12-22
接受日期:
2010-07-27
出版日期:
2010-09-20
发布日期:
2010-09-20
通讯作者:
刘彤
作者简介:
* E-mail: liutong1968@yahoo.com.cn基金资助:
Lei Li, Tong Liu*(), Bin Liu, Zhongquan Liu, Langming Si, Rong Zhang
Received:
2009-12-22
Accepted:
2010-07-27
Online:
2010-09-20
Published:
2010-09-20
Contact:
Tong Liu
摘要:
拟南芥(Arabidopsis thaliana)自然居群的表型特征代表其在自然环境下的适应状况, 不同居群间特征的对比可以为了解拟南芥表型变化规律, 进而分析其形成过程和机制提供重要线索。本研究以分布于新疆北部天山、塔尔巴哈台山和阿尔泰山的10个种群的9个表型性状为基础, 对比分析了小尺度、局域尺度和区域尺度环境下原生境拟南芥种群表型性状的变化。结果发现, 不同性状对环境变化的反应不同, 其中株高、株重、根重、根长、单个果实重、果实开裂力度在3种环境尺度下种群间的差异均达到极显著水平, 而分枝数、果实长度的种群间变化不显著, 种群间的表型分化系数较低。不同环境尺度下株重、根重、单株果数均表现出一致的协变格局, 反映了生理功能性状之间整合对拟南芥适应环境的重要性。同时, 各种群间整体的性状协变差异性明显, 根长、单个果实重、分枝数、果实长度、果实开裂力度等特征与其他特征协变具有明显的局部性, 局域尺度和区域尺度环境之间的变化较大。聚类分析发现区域尺度上的不同种群聚合在一起的现象非常突出, 进一步表明拟南芥的表型特征受微环境的强烈影响。Mantel检验表明, 小尺度上10个种群株高、株重、根重、单个果实重、果实长度、果实开裂力度6个性状变化存在显著的空间相关性, 而分枝数、根长的相关性却不显著。因此, 我们认为拟南芥表型变化受小尺度环境的影响强烈, 但在表型层面并非所有性状都与原生境气候存在遗传关联。
李磊, 刘彤, 刘斌, 刘忠权, 司朗明, 张荣 (2010) 新疆北部拟南芥自然居群表型变异与协变. 生物多样性, 18, 497-508. DOI: 10.3724/SP.J.1003.2010.497.
Lei Li, Tong Liu, Bin Liu, Zhongquan Liu, Langming Si, Rong Zhang (2010) Phenotypic variation and covariation among natural populations of Arabidopsis thaliana in North Xinjiang. Biodiversity Science, 18, 497-508. DOI: 10.3724/SP.J.1003.2010.497.
图1 新疆北部拟南芥种群分布地点示意图。A: 石河子; B: 独山子; C: 果子沟; D: 额敏; E: 阿勒泰; F: 富蕴; G: 青河。
Fig. 1 The sketch map of locations of Arabidopsis thaliana populations in north of Tianshan Mountains. A: Shihezi; B: Dushanzi; C; Guozigou; D; Emin; E: Aletai; F: Fuyun; G: Qinghe.
种群 Population | 主成分 PC | 贡献率 POV (%) | 特征向量 Eigenvectors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
分枝数 Branch number | 株高 Plant height (cm) | 株重 Plant biomass (mg) | 根重 Root biomass (mg) | 根长 Root length (cm) | 单个果实重 Single fruit weight (mg) | 单株果数 Number of fruits per plant | 果实长度 Fruit length (mm) | 果实开裂力度 Fruit dehiscence force (kg/cm2) | |||
小尺度种群 Micro-scale population | |||||||||||
独山子 Dushanzi | 1 | 37.39 | 0.80 | 0.78 | 0.60 | 0.81 | 0.69 | -0.44 | 0.59 | 0.29 | 0.08 |
2 | 18.45 | 0.31 | -0.18 | 0.47 | -0.06 | -0.32 | 0.55 | -0.18 | 0.59 | 0.73 | |
果子沟 Guzigou | 1 | 52.55 | 0.64 | 0.82 | 0.92 | 0.85 | 0.84 | 0.49 | 0.84 | 0.60 | -0.10 |
2 | 14.48 | 0.36 | -0.16 | -0.07 | -0.24 | 0.09 | 0.55 | -0.04 | -0.07 | 0.86 | |
青河1 Qinghe1 | 1 | 54.84 | 0.63 | 0.76 | 0.93 | 0.77 | 0.74 | 0.66 | 0.81 | 0.72 | 0.52 |
2 | 15.40 | -0.55 | 0.36 | -0.04 | -0.36 | -0.46 | 0.06 | 0.36 | 0.06 | 0.67 | |
青河2 Qinghe 2 | 1 | 48.17 | 0.77 | 0.63 | 0.96 | 0.82 | 0.46 | 0.38 | 0.83 | 0.74 | -0.33 |
2 | 17.63 | -0.48 | -0.51 | 0.09 | 0.24 | 0.59 | 0.74 | -0.02 | -0.05 | 0.32 | |
阿勒泰1 Aletai1 | 1 | 46.25 | 0.93 | 0.53 | 0.93 | 0.75 | 0.58 | 0.65 | 0.80 | 0.17 | 0.34 |
2 | 20.99 | -0.06 | -0.82 | 0.14 | 0.15 | 0.42 | 0.09 | -0.39 | 0.85 | 0.31 | |
阿勒泰2 Aletai 2 | 1 | 44.69 | 0.82 | 0.80 | 0.97 | 0.75 | 0.47 | -0.03 | 0.91 | 0.26 | 0.23 |
2 | 14.02 | 0.21 | 0.14 | -0.02 | -0.35 | 0.06 | 0.24 | -0.13 | -0.41 | 0.90 | |
阿勒泰3 Aletai 3 | 1 | 33.07 | 0.75 | -0.47 | 0.65 | 0.68 | 0.81 | -0.15 | 0.29 | -0.68 | 0.21 |
2 | 21.97 | -0.14 | 0.67 | 0.03 | 0.35 | 0.27 | 0.31 | 0.68 | 0.52 | 0.68 | |
额敏 Emin | 1 | 42.33 | 0.82 | 0.81 | 0.88 | 0.79 | 0.32 | 0.45 | 0.79 | 0.27 | 0.17 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | -0.01 | -0.34 | -0.03 | 0.85 | |
富蕴 Fuyun | 1 | 39.66 | 0.71 | 0.14 | 0.89 | 0.88 | 0.72 | -0.53 | 0.67 | 0.42 | -0.13 |
2 | 24.01 | 0.45 | 0.86 | 0.09 | -0.24 | 0.07 | 0.54 | -0.46 | 0.68 | 0.38 | |
石河子 Shihezi | 1 | 35.13 | 0.77 | 0.24 | 0.91 | 0.86 | 0.44 | 0.37 | 0.70 | -0.02 | 0.09 |
2 | 27.27 | -0.03 | 0.67 | 0.08 | -0.15 | -0.50 | 0.33 | -0.02 | 0.93 | 0.84 | |
局域尺度种群 Local-scale population | |||||||||||
天山北 North of Tianshan | 1 | 56.61 | 0.56 | 0.88 | 0.97 | 0.91 | 0.76 | 0.77 | 0.93 | 0.42 | 0.12 |
2 | 15.82 | 0.15 | -0.02 | -0.04 | -0.15 | -0.38 | 0.06 | -0.05 | 0.70 | 0.86 | |
阿尔泰北 North of Aletai | 1 | 40.08 | 0.27 | 0.74 | 0.94 | 0.83 | 0.64 | 0.17 | 0.90 | -0.01 | -0.39 |
2 | 18.99 | 0.66 | -0.40 | 0.10 | 0.19 | 0.10 | -0.67 | 0.21 | 0.18 | 0.73 | |
阿尔泰南 South of Aletai | 1 | 43.54 | -0.06 | -0.34 | 0.91 | 0.93 | 0.66 | -0.30 | 0.95 | 0.15 | -0.81 |
2 | 24.16 | 0.75 | 0.72 | 0.30 | 0.08 | 0.29 | 0.45 | -0.05 | 0.80 | 0.23 | |
天山西 West of Tianshan | 1 | 52.67 | 0.64 | 0.82 | 0.92 | 0.85 | 0.85 | 0.51 | 0.85 | 0.61 | -0.10 |
2 | 14.44 | 0.38 | -0.15 | -0.08 | -0.25 | 0.09 | 0.53 | -0.04 | -0.10 | 0.87 | |
额敏 Emin | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 | |
区域尺度种群 Regional-scale population | |||||||||||
天山 Tianshan | 1 | 51.79 | 0.24 | 0.94 | 0.97 | 0.95 | 0.68 | 0.09 | 0.95 | 0.65 | -0.28 |
2 | 17.43 | 0.64 | -0.15 | -0.05 | -0.14 | 0.30 | 0.74 | -0.07 | 0.24 | 0.65 | |
阿尔泰山 Aletai Mountain | 1 | 41.34 | 0.24 | 0.75 | 0.93 | 0.91 | 0.51 | 0.03 | 0.85 | 0.09 | -0.64 |
2 | 14.66 | 0.67 | 0.02 | 0.07 | -0.08 | 0.14 | 0.46 | -0.01 | 0.64 | 0.46 | |
塔尔巴哈台山 Tarbagatai Mountain | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 |
表1 3种环境尺度下拟南芥种群9个表型性状主成分分析
Table 1 Principal component analysis of nine phenotypic traits of Arabidopsis thaliana populations at three environmental scales
种群 Population | 主成分 PC | 贡献率 POV (%) | 特征向量 Eigenvectors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
分枝数 Branch number | 株高 Plant height (cm) | 株重 Plant biomass (mg) | 根重 Root biomass (mg) | 根长 Root length (cm) | 单个果实重 Single fruit weight (mg) | 单株果数 Number of fruits per plant | 果实长度 Fruit length (mm) | 果实开裂力度 Fruit dehiscence force (kg/cm2) | |||
小尺度种群 Micro-scale population | |||||||||||
独山子 Dushanzi | 1 | 37.39 | 0.80 | 0.78 | 0.60 | 0.81 | 0.69 | -0.44 | 0.59 | 0.29 | 0.08 |
2 | 18.45 | 0.31 | -0.18 | 0.47 | -0.06 | -0.32 | 0.55 | -0.18 | 0.59 | 0.73 | |
果子沟 Guzigou | 1 | 52.55 | 0.64 | 0.82 | 0.92 | 0.85 | 0.84 | 0.49 | 0.84 | 0.60 | -0.10 |
2 | 14.48 | 0.36 | -0.16 | -0.07 | -0.24 | 0.09 | 0.55 | -0.04 | -0.07 | 0.86 | |
青河1 Qinghe1 | 1 | 54.84 | 0.63 | 0.76 | 0.93 | 0.77 | 0.74 | 0.66 | 0.81 | 0.72 | 0.52 |
2 | 15.40 | -0.55 | 0.36 | -0.04 | -0.36 | -0.46 | 0.06 | 0.36 | 0.06 | 0.67 | |
青河2 Qinghe 2 | 1 | 48.17 | 0.77 | 0.63 | 0.96 | 0.82 | 0.46 | 0.38 | 0.83 | 0.74 | -0.33 |
2 | 17.63 | -0.48 | -0.51 | 0.09 | 0.24 | 0.59 | 0.74 | -0.02 | -0.05 | 0.32 | |
阿勒泰1 Aletai1 | 1 | 46.25 | 0.93 | 0.53 | 0.93 | 0.75 | 0.58 | 0.65 | 0.80 | 0.17 | 0.34 |
2 | 20.99 | -0.06 | -0.82 | 0.14 | 0.15 | 0.42 | 0.09 | -0.39 | 0.85 | 0.31 | |
阿勒泰2 Aletai 2 | 1 | 44.69 | 0.82 | 0.80 | 0.97 | 0.75 | 0.47 | -0.03 | 0.91 | 0.26 | 0.23 |
2 | 14.02 | 0.21 | 0.14 | -0.02 | -0.35 | 0.06 | 0.24 | -0.13 | -0.41 | 0.90 | |
阿勒泰3 Aletai 3 | 1 | 33.07 | 0.75 | -0.47 | 0.65 | 0.68 | 0.81 | -0.15 | 0.29 | -0.68 | 0.21 |
2 | 21.97 | -0.14 | 0.67 | 0.03 | 0.35 | 0.27 | 0.31 | 0.68 | 0.52 | 0.68 | |
额敏 Emin | 1 | 42.33 | 0.82 | 0.81 | 0.88 | 0.79 | 0.32 | 0.45 | 0.79 | 0.27 | 0.17 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | -0.01 | -0.34 | -0.03 | 0.85 | |
富蕴 Fuyun | 1 | 39.66 | 0.71 | 0.14 | 0.89 | 0.88 | 0.72 | -0.53 | 0.67 | 0.42 | -0.13 |
2 | 24.01 | 0.45 | 0.86 | 0.09 | -0.24 | 0.07 | 0.54 | -0.46 | 0.68 | 0.38 | |
石河子 Shihezi | 1 | 35.13 | 0.77 | 0.24 | 0.91 | 0.86 | 0.44 | 0.37 | 0.70 | -0.02 | 0.09 |
2 | 27.27 | -0.03 | 0.67 | 0.08 | -0.15 | -0.50 | 0.33 | -0.02 | 0.93 | 0.84 | |
局域尺度种群 Local-scale population | |||||||||||
天山北 North of Tianshan | 1 | 56.61 | 0.56 | 0.88 | 0.97 | 0.91 | 0.76 | 0.77 | 0.93 | 0.42 | 0.12 |
2 | 15.82 | 0.15 | -0.02 | -0.04 | -0.15 | -0.38 | 0.06 | -0.05 | 0.70 | 0.86 | |
阿尔泰北 North of Aletai | 1 | 40.08 | 0.27 | 0.74 | 0.94 | 0.83 | 0.64 | 0.17 | 0.90 | -0.01 | -0.39 |
2 | 18.99 | 0.66 | -0.40 | 0.10 | 0.19 | 0.10 | -0.67 | 0.21 | 0.18 | 0.73 | |
阿尔泰南 South of Aletai | 1 | 43.54 | -0.06 | -0.34 | 0.91 | 0.93 | 0.66 | -0.30 | 0.95 | 0.15 | -0.81 |
2 | 24.16 | 0.75 | 0.72 | 0.30 | 0.08 | 0.29 | 0.45 | -0.05 | 0.80 | 0.23 | |
天山西 West of Tianshan | 1 | 52.67 | 0.64 | 0.82 | 0.92 | 0.85 | 0.85 | 0.51 | 0.85 | 0.61 | -0.10 |
2 | 14.44 | 0.38 | -0.15 | -0.08 | -0.25 | 0.09 | 0.53 | -0.04 | -0.10 | 0.87 | |
额敏 Emin | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 | |
区域尺度种群 Regional-scale population | |||||||||||
天山 Tianshan | 1 | 51.79 | 0.24 | 0.94 | 0.97 | 0.95 | 0.68 | 0.09 | 0.95 | 0.65 | -0.28 |
2 | 17.43 | 0.64 | -0.15 | -0.05 | -0.14 | 0.30 | 0.74 | -0.07 | 0.24 | 0.65 | |
阿尔泰山 Aletai Mountain | 1 | 41.34 | 0.24 | 0.75 | 0.93 | 0.91 | 0.51 | 0.03 | 0.85 | 0.09 | -0.64 |
2 | 14.66 | 0.67 | 0.02 | 0.07 | -0.08 | 0.14 | 0.46 | -0.01 | 0.64 | 0.46 | |
塔尔巴哈台山 Tarbagatai Mountain | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 |
图2 3种环境尺度下拟南芥种群9个表型性状的方差分析。**表示种群间该表型性状在P = 0.01水平上差异显著; a、b、c、d为表型性状多重比较的Duncan grouping表示值, 同一小图中含有相同字母者为差异不显著。小尺度种群: D, 独山子; G, 果子沟; Q1, 青河1; Q2, 青河2; A1, 阿勒泰1; A2, 阿勒泰2; A3, 阿勒泰3; E, 额敏; F:富蕴; S, 石河子。局域尺度种群: SD, 天山北; G, 天山西; E, 额敏; A, 阿勒泰北; QF, 阿勒泰南。区域尺度种群: Tianshan, 天山;Aletai, 阿尔泰山; Tarbagatai, 塔尔巴哈 台山。
Fig. 2 Results of variance analysis of nine phenotypic traits of ten Arabidopsis thaliana populations at three environmental scales. ** Significantly different among populations at P = 0.01 level. a, b, c, d represent Duncan grouping values, the same letter indicating no significance among populations. Micro-scale population: D, Dushanzi; G, Guzigou; Q1, Qinghe1; Q2, Qinghe 2; A1, Aletai 1; A2, Aletai 2; A3, Aletai 3; E, Emin; F, Fuyun; S, Shihezi. Local-scale population: SD, North of Tianshan; G, Guzigou; E, Emin; A, North of Aletai; QF, South of Aletai.
性状 Traits | 小尺度种群 Micro-scale population | 局域尺度种群 Local-scale population | 区域尺度种群 Regional - scale population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | |||
分枝数 Branch number | 3.94 | 3.94 | 50.00 | 0.26 | 8.16 | 3.13 | 1.82 | 24.74 | 6.86 | ||
株高 Plant height (cm) | 68.89 | 6.41 | 91.49 | 78.32 | 5.72 | 93.19 | 50.66 | 0.28 | 99.45 | ||
株重 Plant biomass (mg) | 84.92 | 1.67 | 98.08 | 63.64 | 5.97 | 91.43 | 51.93 | 17.45 | 74.85 | ||
根重 Root biomass (mg) | 72.84 | 4.86 | 93.75 | 72.50 | 1.85 | 97.51 | 54.58 | 3.63 | 93.77 | ||
根长 Root length (cm) | 21.84 | 8.54 | 71.88 | 23.90 | 3.57 | 87.00 | 38.74 | 30.53 | 55.93 | ||
单个果实重 Single fruit weight (mg) | 42.06 | 6.54 | 86.54 | 32.03 | 7.81 | 80.39 | 42.28 | 14.09 | 75.00 | ||
单株果数 Number of fruits per plant | 64.78 | 6.32 | 91.11 | 70.60 | 2.02 | 97.22 | 28.11 | 5.90 | 82.64 | ||
果实长度 Fruit length (mm) | 16.59 | 11.90 | 58.22 | 27.83 | 13.70 | 67.01 | 19.15 | 10.19 | 65.27 | ||
果实开裂力度 (kg/cm2) Fruit dehiscence force | 66.35 | 0.47 | 99.29 | 60.00 | 20.00 | 75.00 | 77.78 | 11.11 | 87.50 | ||
平均值 Mean | 49.13 | 5.62 | 82.26 | 47.68 | 7.64 | 76.88 | 40.56 | 13.10 | 71.25 |
表2 3种环境尺度下拟南芥种群间和种群内性状方差分量百分比及表型分化系数(%)
Table 2 The percentage of variance components and differentiation coefficients of phenotypic traits (Vst) within and among Arabidopsis thaliana populations at three environmental scales
性状 Traits | 小尺度种群 Micro-scale population | 局域尺度种群 Local-scale population | 区域尺度种群 Regional - scale population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | |||
分枝数 Branch number | 3.94 | 3.94 | 50.00 | 0.26 | 8.16 | 3.13 | 1.82 | 24.74 | 6.86 | ||
株高 Plant height (cm) | 68.89 | 6.41 | 91.49 | 78.32 | 5.72 | 93.19 | 50.66 | 0.28 | 99.45 | ||
株重 Plant biomass (mg) | 84.92 | 1.67 | 98.08 | 63.64 | 5.97 | 91.43 | 51.93 | 17.45 | 74.85 | ||
根重 Root biomass (mg) | 72.84 | 4.86 | 93.75 | 72.50 | 1.85 | 97.51 | 54.58 | 3.63 | 93.77 | ||
根长 Root length (cm) | 21.84 | 8.54 | 71.88 | 23.90 | 3.57 | 87.00 | 38.74 | 30.53 | 55.93 | ||
单个果实重 Single fruit weight (mg) | 42.06 | 6.54 | 86.54 | 32.03 | 7.81 | 80.39 | 42.28 | 14.09 | 75.00 | ||
单株果数 Number of fruits per plant | 64.78 | 6.32 | 91.11 | 70.60 | 2.02 | 97.22 | 28.11 | 5.90 | 82.64 | ||
果实长度 Fruit length (mm) | 16.59 | 11.90 | 58.22 | 27.83 | 13.70 | 67.01 | 19.15 | 10.19 | 65.27 | ||
果实开裂力度 (kg/cm2) Fruit dehiscence force | 66.35 | 0.47 | 99.29 | 60.00 | 20.00 | 75.00 | 77.78 | 11.11 | 87.50 | ||
平均值 Mean | 49.13 | 5.62 | 82.26 | 47.68 | 7.64 | 76.88 | 40.56 | 13.10 | 71.25 |
图3 基于小尺度环境下拟南芥10个种群9个表型性状的聚类图
Fig. 3 Hierarchical cluster based on nine phenotypic traits of ten Arabidopsis thaliana populations in micro-scale environments
矩阵对比 Matrix comparison | Mantel’s r | P |
---|---|---|
分枝数 vs 地理距离 Branch number vs geographic distance | -0.037 | 0.955 |
株高 vs 地理距离 Plant height vs geographic distance | 0.338 | 0.000 |
株重 vs 地理距离 Plant biomass vs geographic distance | 0.246 | 0.000 |
根重 vs 地理距离 Root biomass vs geographic distance | 0.279 | 0.000 |
单个果实重 vs 地理距离 Single fruit weight vs geographic distance | 0.062 | 0.016 |
单株果数 vs 地理距离 Number of fruits per plant vs geographic distance | 0.352 | 0.000 |
果实长度 vs 地理距离 Fruit length vs geographic distance | 0.097 | 0.001 |
果实开裂力度 vs 地理距离 Fruit dehiscence force vs geographic distance | 0.303 | 0.000 |
根长 vs 地理距离 Root length vs geographic distance | 0.006 | 0.398 |
表3 拟南芥表型特征变化与地理距离相关性的Mantel检验
Table 3 Mantel test between geographic distance and phenotypic traits of Arabidopsis thaliana populations
矩阵对比 Matrix comparison | Mantel’s r | P |
---|---|---|
分枝数 vs 地理距离 Branch number vs geographic distance | -0.037 | 0.955 |
株高 vs 地理距离 Plant height vs geographic distance | 0.338 | 0.000 |
株重 vs 地理距离 Plant biomass vs geographic distance | 0.246 | 0.000 |
根重 vs 地理距离 Root biomass vs geographic distance | 0.279 | 0.000 |
单个果实重 vs 地理距离 Single fruit weight vs geographic distance | 0.062 | 0.016 |
单株果数 vs 地理距离 Number of fruits per plant vs geographic distance | 0.352 | 0.000 |
果实长度 vs 地理距离 Fruit length vs geographic distance | 0.097 | 0.001 |
果实开裂力度 vs 地理距离 Fruit dehiscence force vs geographic distance | 0.303 | 0.000 |
根长 vs 地理距离 Root length vs geographic distance | 0.006 | 0.398 |
[1] |
Adrian B (2007) Perceptions of epigenetics. Nature, 447, 396-398.
URL PMID |
[2] | An ZX (安争夕), Shen GM (沈观冕), Li XY (李学禹) (1995) Flora of Xinjiang (新疆植物志). Xinjiang Science Technology and Hygeian Press, Urumqi. (in Chinese) |
[3] | Badyaev AV, Uller T (2009) Parental effects in ecology and evolution: mechanisms, processes and implications. Philosophical Transactions of the Royal Society B, 364, 1169-1177. |
[4] | Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M, Bergelson J (2006) Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Molecular Ecology, 15, 1405-1418. |
[5] | Banta JA, Dole J, Cruzan MB, Pigliucci M (2007) Evidence of local adaptation to coarse-grained environmental variation in Arabidopsis thaliana. Evolution, 61, 2419-2432. |
[6] |
Beck JB, Schmuths H, Schual BA (2008) Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics. Molecular Ecology, 17, 902-915.
URL PMID |
[7] |
Benfey PN, Mitchell-Olds T (2008) From genotype to phenotype: systems biology meets natural variation. Science, 320, 495-497.
DOI URL PMID |
[8] | Boyd EW, Dorn LA, Weinig C, Schmitt J (2007) Maternal effects and germination timing mediate the expression of winter and spring annual life histories in Arabidopsis thaliana. International Journal of Plant Sciences, 168, 205-214. |
[9] | Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecology Letters, 11, 106-115. |
[10] | Brock MT, Maloof JN, Weinig C (2010) Genes underlying quantitative variation in ecologically important traits: PIF4 (PHYTOCHROME INTERACTING FACTOR 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana. Molecular Ecology, 19, 1187-1199. |
[11] | Conchita A, Carlos MH (2001) Patterns made of patterns: variation and covariation of leaf nutrient concentrations within and between populations of Prunus mahaleb. New Phytologist, 150, 629-640. |
[12] | Dalziel AC, Rogers SM, Schulte PM (2009) Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Molecular Ecology, 18, 4997-5017. |
[13] | Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society B, 364, 1059-1074. |
[14] | Donohue K, Dorn LA, Griffith C, Schmitt J, Kim ES, Aguilera A (2005a) Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution, 59, 740-757. |
[15] | Donohue K, Dorn LA, Griffith C, Schmitt J, Kim ES, Aguilera A (2005b) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution, 59, 758-770. |
[16] | Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, Douglas A, Bernstein PR, Lawrence EH, Chin B, Nislow C, Giaever G, Patrick CP, Gerald RF, David KG, Boone C (2010) Genotype to phenotype: a complex problem. Science, 328, 4-9. |
[17] | Galloway LF, Burgess KS (2009) Manipulation of flowering time: phenological integration and maternal effects. Ecology, 90, 2139-2148. |
[18] | Gao LX, Chen JK, Yang J (2008) Phenotypic plasticity: Eco-Devo and evolution. Journal of Systematics and Evolution, 46, 441-451. |
[19] | Ge S (葛颂), Hong DY (洪德元) (1994) Biosystematic studies on Adenophora potaninii Korsh. Complex (Campanulac- eae). I. Phenotypic plasticity. Acta Phytotaxonomica Sinica (植物分类学报), 32, 489-503. (in Chinese with English abstract) |
[20] | Gianoli E, Palacio-Lopez K (2009) Phenotypic integration may constrain phenotypic plasticity in plants. Oikos, 118, 1924-1928. |
[21] | Gu YJ (辜云杰), Luo JX (罗建勋), Wu YW (吴远伟), Cao XJ (曹小军) (2009) Phenotypic diversity in natural popula- tions of Picea balfouriana in Sichuan, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 291-301. (in Chinese with English abstract) |
[22] |
He F, Kang D, Ren Y, Qu LJ, Zhen Y, Gu H (2007) Genetic diversity of the natural populations of Arabidopsis thaliana in China. Heredity, 99, 423-431.
URL PMID |
[23] |
Hedrick PW (2005) A standardized genetic differentiation measure. Evolution, 59, 1633-1638.
URL PMID |
[24] | Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241. |
[26] | Klingenberg CP (2008) Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115-132. |
[27] | Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology, 55, 141-172. |
[28] | Liu T (刘彤), Zhao XJ (赵新俊), Cui YH (崔运河), Liu CL (刘龙昌), Jia YM (贾亚敏), Luo B (骆郴), Wei P (魏鹏), Zhang YH (张元杭) (2008) Spatial associations and patterns of Arabidopsis thaliana and its adjacent species in the middle part of northern Tianshan Mountain. Acta Ecologica Sinica (生态学报), 28, 1842-1849. (in Chinese with English abstract) |
[29] | Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature, 441, 947-952. |
[30] |
Mitchell-Olds T, Willis J, Goldstein D (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nature Reviews Genetics, 8, 845-856.
URL PMID |
[31] | Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philosophical Transactions of the Royal Society B, 365, 557-566. |
[32] | Pigliucci M, Cammell K, Schmitt J (1999) Evolution of phenotypic plasticity a comparative approach in the phylogenetic neighbourhood of Arabidopsis thaliana. Journal of Evolutionary Biology, 12, 779-791. |
[33] | Pigliucci M, Kolodynska A (2002) Phenotypic plasticity to light intensity in Arabidopsis thaliana: invariance of reaction norms and phenotypic integration. Evolutionary Ecology, 16, 27-47. |
[34] | Price RA, Palmer JA, Systematic relationships of Arabidopsis: a molecular and morphological perspective. 7-19. Cold Spring Harbour Laboratory Press, Cold Spring Harbour. |
[35] |
Rebecca LY, Alexander VB (2006) Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex trait evolution. Evolution, 60, 1-9.
URL PMID |
[36] | Reboud X, Corre LV, Scarcelli N, Roux F, David JL, Bataillon T, Camillert C, Brunel D, Mckhann H (2004) Natural variation among accessions of Arabidopsis thaliana: beyond the flowering date, what morphological traits are relevant to study adaptation? In: Plant Adaptation: Molecular Biology and Ecology (eds Cronk QC, Whitton J, Taylor IEP), pp. 135-142. NRC Research Press, Ottawa, Canada. |
[37] | Schlichting CD (1989) Phenotypic integration and environmental change. BioScience, 39, 460-464. |
[38] | Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16, 189-211. |
[39] | Tao Y (陶冶), Wang D (王丹), Liu T (刘彤), Jiang CG (蒋成国), Zhai W (翟伟), Li YG (李勇冠), Tang C (唐诚) (2009) Community characteristics of Arabidopsis thaliana natural populations in the northern Tianshan Mountains along with relevant environmental factors. Biodiversity Science (生物多样性), 17, 51-61. (in Chinese with English abstract) |
[40] |
Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42, 260-263.
DOI URL PMID |
[41] | Young NM (2006) Function, ontogeny and canalization of shape variance in the primate scapula. Journal of Anatomy, 209, 23-36. |
[42] |
Verdugo CG, Yela CG, Manrique E, Casas RR, Balaguer L (2009) Phenotypic plasticity and integration across the canopy of Olea europaea subsp. guanchica (Oleaceae) in populations with different wind exposures. American Journal of Botany. 96, 1454-1461.
DOI URL PMID |
[43] | Wagner GP (1990) A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Journal of Zoological Systematics and Evolutionary Research, 28, 48-61. |
[44] | Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nature Reviews Genetics, 8, 921-931. |
[45] |
Werner JD, Borevitz JO, Uhlenhaut N H, Ecker JR, Chory J, Weigel D (2005) FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics, 170, 1197-1207.
DOI URL PMID |
[46] | Willmore KE, Leamy L, Hallgrímsson B (2006) Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evolution and Development, 8, 550-567. |
[47] | Winker K (2009) Reuniting phenotype and genotype in biodiversity research. BioScience, 59, 657-665. |
[48] | Zhang HQ (张恒庆), An LJ (安利佳), Zu YG (祖元刚) (1999) Geographical variation of morphology characters for natural population of Pinus koraiensis. Acta Ecologica Sinica (生态学报), 19, 932-938. (in Chinese with English abstract) |
[49] | Zhen Y, Ungerer MC (2008) Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytologist, 177, 419-427. |
[1] | 谢华, 杨培, 李宗波. 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化[J]. 生物多样性, 2024, 32(6): 24001-. |
[2] | 杨锐, 侯姝彧, 张引, 赵智聪. 论建立中国自然保护兼用地的必要性和可行性[J]. 生物多样性, 2024, 32(4): 23454-. |
[3] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[4] | 景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽. 全基因组重测序方法在濒危植物保护中的应用[J]. 生物多样性, 2023, 31(5): 22679-. |
[5] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[6] | 罗瑞, 陈娅, 张汉马. 芸薹属植物全基因组重测序研究进展[J]. 生物多样性, 2023, 31(10): 23237-. |
[7] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[8] | 宋佳, 职铭阳, 陈强, 李玥莹, 吴隆坤, 农保选, 李丹婷, 逄洪波, 郑晓明. 水稻耐寒基因CTB4a的核苷酸多样性及区域适应性[J]. 生物多样性, 2022, 30(2): 21258-. |
[9] | 焦振彬, 罗毅波. 群体表型性状研究揭示环境与遗传因素对霍山石斛表型及物种分类的影响[J]. 生物多样性, 2021, 29(8): 1073-1086. |
[10] | 胡正艳, 郑全晶, 母其勇, 杜志强, 刘琳, 星耀武, 韩廷申. 不同纬度高蔊菜的交配系统和繁殖保障[J]. 生物多样性, 2021, 29(6): 712-721. |
[11] | 王婷, 夏增强, 舒江平, 张娇, 王美娜, 陈建兵, 王慷林, 向建英, 严岳鸿. 全基因组复制事件的绝对定年揭示莲座蕨属植物的迟滞演化[J]. 生物多样性, 2021, 29(6): 722-734. |
[12] | 孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙. 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样性, 2021, 29(1): 72-80. |
[13] | 冯秋红, 李登峰, 于涛, 李俊清, 马文宝, 张雷. 极小种群野生植物梓叶槭的种实表型变异特征[J]. 生物多样性, 2020, 28(3): 314-322. |
[14] | 陈冬东, 李镇清. 极小种群野生植物生存力分析: 方法、问题与展望[J]. 生物多样性, 2020, 28(3): 358-366. |
[15] | 陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强. 基于功能性状的水杉原生母树种群生境适应策略[J]. 生物多样性, 2020, 28(3): 296-302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn