生物多样性 ›› 2011, Vol. 19 ›› Issue (3): 295-302. DOI: 10.3724/SP.J.1003.2011.08318
收稿日期:
2010-12-23
接受日期:
2011-03-10
出版日期:
2011-05-20
发布日期:
2013-12-10
通讯作者:
郝占庆
作者简介:
*E-mail:hzq@iae.ac.cn基金资助:
Dingliang Xing1,2, Zhanqing Hao1,*()
Received:
2010-12-23
Accepted:
2011-03-10
Online:
2011-05-20
Published:
2013-12-10
Contact:
Zhanqing Hao
摘要:
最大熵原理(the principle of maximum entropy)起源于信息论和统计力学, 是基于有限的已知信息对未知分布进行无偏推断的一种数学方法。这一方法在很多领域都有成功应用, 但只是近几年才被应用到生态学研究中, 并且还存在很多争论。我们从基本概念和方法出发, 用掷骰子的例子阐明了最大熵原理的概念, 并提出运用最大熵原理解决问题需要遵从的步骤。最大熵原理在生态学中的应用主要包括以下方面: (1)用群落水平功能性状的平均值作为约束条件来预测群落物种相对多度的模型; (2)基于气候、海拔、植被等环境因子构建物种地理分布的生态位模型; (3)对物种多度分布、种-面积关系等宏生态学格局的推断; (4)对物种相互作用的推断; (5)对食物网度分布的研究等等。最后我们综合分析了最大熵原理在生态学应用中所存在的争议, 包括相应模型的有效性、可靠性等方面, 介绍了一些对最大熵原理预测能力及其局限性的检验结果, 强调了生态学家应用最大熵原理需要注意的问题, 比如先验分布的选择、约束条件的设置等等。在物种相互作用、宏生态学格局等方面对最大熵原理更广泛的讨论与应用可能会给生态学带来新的发展机会。
邢丁亮, 郝占庆 (2011) 最大熵原理及其在生态学研究中的应用. 生物多样性, 19, 295-302. DOI: 10.3724/SP.J.1003.2011.08318.
Dingliang Xing, Zhanqing Hao (2011) The principle of maximum entropy and its applications in ecology. Biodiversity Science, 19, 295-302. DOI: 10.3724/SP.J.1003.2011.08318.
图1 ISI Web of Science数据库检索结果。检索词为Topic=(("Maximum Entropy" OR MaxEnt OR "Statistical Mechanics") AND (Ecology OR Biodiversity)), 检索时间范围为所有年份(检索日期: 2011年5月19日)。左图为各个年份所发表的文章数量, 右图为这些文章的引用情况。
Fig. 1 ISI Web of Science search reports (accessed on 19 May 2011). The searched words are: Topic=(("Maximum Entropy" OR MaxEnt OR "Statistical Mechanics") AND (Ecology OR Biodiversity)). The left one shows items published in each year; the right one shows citations of these papers in each year.
[1] |
Azaele S, Muneepeerakul R, Rinaldo A, Rodriguez-Iturbe I (2010) Inferring plant ecosystem organization from species occurrences. Journal of Theoretical Biology, 262, 323-329.
URL PMID |
[2] | Banavar JR, Maritan A, Volkov I (2010) Applications of the principle of maximum entropy: from physics to ecology. Journal of Physics: Condensed Matter, 22, 063101. |
[3] | Bowler MG, Kelly CK (2010) The general theory of species abundance distributions. Arxiv preprint arXiv:1002.5008. |
[4] | Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. |
[5] |
Dewar RC, Porte A (2008) Statistical mechanics unifies different ecological patterns. Journal of Theoretical Biology, 251, 389-403.
URL PMID |
[6] | Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences, USA, 99, 12917. |
[7] | Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. |
[8] | Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42-58. |
[9] |
Frank SA (2009) The common patterns of nature. Journal of Evolutionary Biology, 22, 1563-1585.
DOI URL PMID |
[10] | Frank SA (2011) Measurement scale in maximum entropy models of species abundance. Journal of Evolutionary Biology, 24, 485-496. |
[11] | Haegeman B, Etienne RS (2010) Entropy maximization and the spatial distribution of species. The American Naturalist, 175, 74-90. |
[12] | Haegeman B, Loreau M (2008) Limitations of entropy maximization in ecology. Oikos, 117, 1700-1710. |
[13] | Haegeman B, Loreau M (2009) Trivial and non-trivial applications of entropy maximization in ecology: a reply to Shipley. Oikos, 118, 1270-1278. |
[14] |
Harte J, Zillio T, Conlisk E, Smith AB (2008) Maximum entropy and the state-variable approach to macroecology. Ecology, 89, 2700-2711.
URL PMID |
[15] | He F (2010) Maximum entropy, logistic regression, and species abundance. Oikos, 119, 572-582. |
[16] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, New Jersey. |
[17] | Jaynes ET (1957a) Information theory and statistical mechanics. Physical Review, 106, 620-630. |
[18] | Jaynes ET (1957b) Information theory and statistical mechanics. II. Physical Review, 108, 171-190. |
[19] | Jaynes ET (2003) Probability Theory: The Logic of Science. Cambridge University Press, Cambridge. |
[20] |
Leigh Jr EG (2007) Neutral theory: a historical perspective. Journal of Evolutionary Biology, 20, 2075-2091.
URL PMID |
[21] | Li BN (李白尼), Wei W (魏武), Ma J (马骏), Zhang RJ (张润杰) (2009) Maximum entropy niche-based modeling (MaxEnt) of potential geographical distributions of fruit flies Dacus bivittatus, D. ciliatus and D. vertebrates (Diptera: Tephritidae). Acta Entomologica Sinica (昆虫学报), 52, 1122-1131. (in Chinese with English abstract) |
[22] | Li MY (李明阳), Ju YW (巨云为), Kumar S, Stohlgren TJ (2008) Modeling potential habitat for alien species of Dreissena polymorpha in the Continental USA. Acta Ecologica Sinica (生态学报), 28, 4253-4258. (in Chinese with English abstract) |
[23] | Marks CO, Muller-Landau HC (2007) Comment on “From Plant Traits to Plant Communities: A Statistical Mechanistic Approach to Biodiversity”. Science, 316, 1425c. |
[24] |
McGill BJ (2006) A renaissance in the study of abundance. Science, 314, 770-772.
URL PMID |
[25] |
McGill BJ (2010) Towards a unification of unified theories of biodiversity. Ecology Letters, 13, 627-642.
DOI URL PMID |
[26] |
McGill BJ, Nekola JC (2010) Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism. Oikos, 119, 591-603.
DOI URL |
[27] |
Merow C, Latimer A, Silander Jr JA (2011) Can entropy max- imization use functional traits to explain species abund- ances? A comprehensive evaluation. Ecology, In press.
URL PMID |
[28] | Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. |
[29] | Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. |
[30] | Preston FW (1948) The commonness, and rarity, of species. Ecology, 29, 254-283. |
[31] | Preston FW (1962) The canonical distribution of commonness and rarity: Part I. Ecology, 43, 185-215. |
[32] |
Pueyo S, He F, Zillio T (2007) The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecology Letters, 10, 1017-1028.
DOI URL PMID |
[33] | Roxburgh SH, Mokany K (2007) Comment on “From Plant Traits to Plant Communities: A Statistical Mechanistic Approach to Biodiversity”. Science, 316, 1425b. |
[34] |
Roxburgh SH, Mokany K (2010) On testing predictions of species relative abundance from maximum entropy optimisation. Oikos, 119, 583-590.
DOI URL |
[35] | Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379-423. |
[36] | Shipley B (2009a) Limitations of entropy maximization in ecology: a reply to Haegeman and Loreau. Oikos, 118, 152-159. |
[37] | Shipley B (2009b) Trivial and non-trivial applications of entropy maximization in ecology: Shipley’s reply. Oikos, 118, 1279-1280. |
[38] |
Shipley B (2010a) Community assembly, natural selection and maximum entropy models. Oikos, 119, 604-609.
DOI URL |
[39] | Shipley B (2010b) From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities. Cambridge University Press, Cambridge. |
[40] |
Shipley B (2010c) Inferential permutation tests for maximum entropy models in ecology. Ecology, 91, 2794-2805.
URL PMID |
[41] |
Shipley B, Laughlin D, Sonnier G, Otfinowski R (2011) A strong test of maximum entropy model of trait-based community assembly. Ecology, 92, 507-517.
DOI URL PMID |
[42] |
Shipley B, Vile D, Garnier E (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiv- ersity. Science, 314, 812-814.
DOI URL PMID |
[43] | Shipley B, Vile D, Garnier E (2007) Response to Comments on “From Plant Traits to Plant Communities: A Statistical Mec- hanistic Approach to Biodiversity”. Science, 316, 1425d. |
[44] | Sonnier G, Shipley B, Navas ML (2010) Plant traits, species pools and the prediction of relative abundance in plant communities: a maximum entropy approach. Journal of Vegetation Science, 21, 318-331. |
[45] |
Strogatz SH (2001) Exploring complex networks. Nature, 410, 268-276.
DOI URL PMID |
[46] | Volkov I, Banavar JR, Hubbell SP, Maritan A (2009) Inferring species interactions in tropical forests. Proceedings of the National Academy of Sciences, USA, 106, 13854-13859. |
[47] | Wang L (王林), Dai GZ (戴冠中) (2006) On degree distribution of complex network. Journal of Northwestern Polytechnical University (西北工业大学学报), 24, 405-409. (in Chinese with English abstract) |
[48] | Wang YS (王运生), Xie BY (谢丙炎), Wang FH (万方浩), Xiao QM (肖启明), Dai LY (戴良英) (2007) Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models. Biodiversity Science (生物多样性), 15, 365-372. (in Chinese with English abstract) |
[49] | Williams RJ (2010) Simple MaxEnt models explain food web degree distributions. Theoretical Ecology, 3, 45-52. |
[50] |
Williams RJ (2011) Biology, methodology or chance? The degree distributions of bipartite ecological networks. PLoS ONE, 6, e17645.
DOI URL PMID |
[51] | Wu NL (吴乃龙), Yuan SY (袁素云) (1991) The Maximum Entropy Method (最大熵方法). Hunan Science and Technology Press, Changsha. (in Chinese) |
[52] | Zeng H (曾辉), Huang GS (黄冠胜), Lin W (林伟), Liang YB (梁忆冰), Li ZH (李志红) (2008) Prediction of potential geographic distribution of Microcyclus ulei in the world using MaxEnt. Plant Protection (植物保护), 34(3), 88-92. (in Chinese with English abstract) |
[53] | Zhang XW (张学文) (2003) The Constitution Theory (组成论). University of Science and Technology of China Press, Hefei. (in Chinese) |
[54] | Zhang XW (张学文), Ma L (马力) (1992) Entropy Mete- orology (熵气象学). China Meteorological Press, Beijing. (in Chinese) |
[1] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[2] | 商晓凡, 张健, 高浩杰, 库伟鹏, 毕玉科, 李修鹏, 阎恩荣. 岛屿面积与气候共同影响舟山群岛种子植物丰富度格局[J]. 生物多样性, 2023, 31(12): 23392-. |
[3] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[4] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[5] | 尚素琴, 吴兴波, 王召龙, 彭鹤年, 周惠丽, 张红勇, 白映禄. 兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布[J]. 生物多样性, 2020, 28(8): 983-992. |
[6] | 刘旻霞, 李全弟, 蒋晓轩, 夏素娟, 南笑宁, 张娅娅, 李博文. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107-116. |
[7] | 秦运芝, 张佳鑫, 刘检明, 刘梦婷, 万丹, 吴浩, 周阳, 孟红杰, 肖之强, 黄汉东, 徐耀粘, 卢志军, 乔秀娟, 江明喜. 湖南八大公山25 ha常绿落叶阔叶混交林动态监测样地群落组成与空间结构[J]. 生物多样性, 2018, 26(9): 1016-1022. |
[8] | 张凤麟, 王昕, 张健. 生物多样性信息资源.II.环境类型数据[J]. 生物多样性, 2018, 26(1): 53-65. |
[9] | 王昕, 张凤麟, 张健. 生物多样性信息资源. I. 物种分布、编目、系统发育与生活史性状[J]. 生物多样性, 2017, 25(11): 1223-1238. |
[10] | 方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华. 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局[J]. 生物多样性, 2016, 24(6): 629-638. |
[11] | 王世雄, 赵亮, 李娜, 郭华, 王孝安, 段仁燕. 稀有种和常见种对植物群落物种丰富度格局的相对贡献[J]. 生物多样性, 2016, 24(6): 658-664. |
[12] | 惠刚盈, 张弓乔, 赵中华, 胡艳波, 白超. 林木分布格局多样性测度方法: 以阔叶红松林为例[J]. 生物多样性, 2016, 24(3): 280-286. |
[13] | 金倩, 陈芬, 罗桂杰, 蔡卫佳, 刘旭, 王昊, 杨采青, 郝梦迪, 张爱兵. 基于DNA条形码的物种丰富度估计: 以宿迁地区鳞翅目蛾类为例[J]. 生物多样性, 2016, 24(11): 1296-1305. |
[14] | 兰国玉, 吴志祥, 谢贵水. 海南橡胶林植物多样性特征[J]. 生物多样性, 2014, 22(5): 658-666. |
[15] | 孙柔鑫, 王彦国, 连光山, 林茂. 海南岛西北沿岸海域浮游桡足类的分布及群落特征[J]. 生物多样性, 2014, 22(3): 320-328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn