生物多样性 ›› 2010, Vol. 18 ›› Issue (3): 300-311. DOI: 10.3724/SP.J.1003.2010.300
收稿日期:
2009-10-19
接受日期:
2010-04-30
出版日期:
2010-05-20
发布日期:
2012-02-08
通讯作者:
白永飞
作者简介:
E-mail: yfbai@ibcas.ac.cn基金资助:
Rui Xue1,2, Shuxia Zheng1, Yongfei Bai1,*()
Received:
2009-10-19
Accepted:
2010-04-30
Online:
2010-05-20
Published:
2012-02-08
Contact:
Yongfei Bai
摘要:
基于2005年6月开始的放牧控制实验, 研究了不同草地利用方式和放牧强度对内蒙古典型羊草(Leymus chinensis)草原群落初级生产力和补偿性生长的影响。草地利用方式包括: 传统放牧、传统割草和放牧与割草轮换利用(混合利用)。结果表明: 传统放牧和混合利用方式下, 羊草群落地上生物量均随放牧强度增加逐渐降低。高载畜率下, 羊草群落地上净初级生产力表现为: 混合利用>传统割草>传统放牧, 说明混合利用方式优于传统放牧和传统割草利用方式; 而低载畜率则有利于草原的可持续利用和植物的补偿性生长。这一实验结果在一定程度上验证了放牧优化假说。在不同利用方式、地形因素的影响和采用不同的群落净生长量计算方法时, 随着放牧强度的变化, 等补偿、超补偿和欠补偿效应都可能出现。在低载畜率下, 群落大多表现出等补偿生长, 在高载畜率下, 群落大多表现出欠补偿生长。植物群落的补偿性生长与载畜率的关系可以用开口向下的二次函数或者斜率为负的线性函数模拟。说明随着载畜率的增加, 一些系统表现为欠补偿生长, 而另一些系统则表现为超补偿生长, 这可能与植物群落组成、地形部位(平地、坡地)和载畜率以及净生长量的计算方法有关。
薛睿, 郑淑霞, 白永飞 (2010) 不同利用方式和载畜率对内蒙古典型草原群落初级生产力和植物补偿性生长的影响. 生物多样性, 18, 300-311. DOI: 10.3724/SP.J.1003.2010.300.
Rui Xue, Shuxia Zheng, Yongfei Bai (2010) Impacts of grazing intensity and management regimes on aboveground primary productivity and compensatory growth of grassland ecosystems in Inner Mongolia. Biodiversity Science, 18, 300-311. DOI: 10.3724/SP.J.1003.2010.300.
SR | RSR1 | RSR2 | |
---|---|---|---|
DM1 | 方法 a: SR-DM1 | 方法 g: RSR1-DM1 | 方法 k: RSR2-DM1 |
DM2 | 方法 b: SR-DM2 | 方法 h: RSR1-DM2 | 方法 l: RSR2-DM2 |
RDM1 | 方法 c: SR-RDM1 | 方法 i: RSR1-RDM1 | |
RDM2 | 方法 d: SR-RDM2 | 方法 j: RSR1-RDM2 | |
RDM3 | 方法 e: SR-RDM3 | 方法 m: RSR2-RDM3 | |
RDM4 | 方法 f : SR-RDM4 | 方法 n: RSR2-RDM4 |
表1 载畜率(SR)、相对载畜率(RSR)与地上净生长量(DM)、相对净生长量(RDM)的配对方法
Table 1 Match methods for the relationship between stocking rate (SR), relative stocking rate (RSR), aboveground net productivity (DM) and relative aboveground net productivity (RDM)
SR | RSR1 | RSR2 | |
---|---|---|---|
DM1 | 方法 a: SR-DM1 | 方法 g: RSR1-DM1 | 方法 k: RSR2-DM1 |
DM2 | 方法 b: SR-DM2 | 方法 h: RSR1-DM2 | 方法 l: RSR2-DM2 |
RDM1 | 方法 c: SR-RDM1 | 方法 i: RSR1-RDM1 | |
RDM2 | 方法 d: SR-RDM2 | 方法 j: RSR1-RDM2 | |
RDM3 | 方法 e: SR-RDM3 | 方法 m: RSR2-RDM3 | |
RDM4 | 方法 f : SR-RDM4 | 方法 n: RSR2-RDM4 |
因素 Factor | 自由度 df | 均方值 Mean square | F | P |
---|---|---|---|---|
载畜率 Stocking rate (SR) | 6 | 22445.970 | 11.412 | 0.0000 |
放牧制度 Grazing system (GS) | 1 | 1683.411 | 0.856 | 0.3582 |
地形 Topographic position (TP) | 1 | 248.6485 | 0.126 | 0.7233 |
载畜率×放牧制度 SR × GS | 6 | 2022.704 | 1.028 | 0.4148 |
载畜率×地形 SR × TP | 6 | 939.0434 | 0.477 | 0.8228 |
放牧制度×地形 GS × TP | 1 | 25405.280 | 12.917 | 0.0006 |
载畜率×放牧制度×地形 SR×GS×TP | 6 | 2472.729 | 1.257 | 0.2891 |
表2 载畜率、放牧制度、地形对羊草群落地上现存生物量的影响
Table 2 Effects of stocking rate, grazing system and topography on the remained aboveground biomass of Leymus chinensis community
因素 Factor | 自由度 df | 均方值 Mean square | F | P |
---|---|---|---|---|
载畜率 Stocking rate (SR) | 6 | 22445.970 | 11.412 | 0.0000 |
放牧制度 Grazing system (GS) | 1 | 1683.411 | 0.856 | 0.3582 |
地形 Topographic position (TP) | 1 | 248.6485 | 0.126 | 0.7233 |
载畜率×放牧制度 SR × GS | 6 | 2022.704 | 1.028 | 0.4148 |
载畜率×地形 SR × TP | 6 | 939.0434 | 0.477 | 0.8228 |
放牧制度×地形 GS × TP | 1 | 25405.280 | 12.917 | 0.0006 |
载畜率×放牧制度×地形 SR×GS×TP | 6 | 2472.729 | 1.257 | 0.2891 |
图1 传统放牧和混合利用系统中, 羊草群落在不同载畜率下的地上现存生物量。不同小写字母表示同一系统在不同载畜率下具有显著差异(P < 0.05)。TGF: 传统放牧平地系统; TGS: 传统放牧坡地系统; MGF: 混合放牧平地系统; MGS: 混合放牧坡地系统。
Fig. 1 Remained aboveground biomass of Leymus chinensis community at different stocking rates in traditional and mixed grazing systems. Different lowercase letters denote significant difference among different stocking rates at P< 0.05. TGF, Traditional grazing flat system; TGS, Traditional grazing slope system; MGF, Mixed grazing flat system; MGS, Mixed grazing slope system.
图2 传统放牧、传统割草和混合利用的平地(A)和坡地(B)系统中, 羊草群落在载畜率为9.0只羊/ha时的地上净初级生产力。不同小写字母表示地上净初级生产力在不同草地利用方式下具有显著差异(P < 0.05)。TG: 传统放牧系统; TH: 传统割草系统; MG: 混合放牧系统。
Fig. 2 Aboveground net primary productivity (ANPP) of Leymus chinensis community in traditional grazing, traditional hay and mixed grazing systems at the stocking rate of 9.0 sheep/ha in (A) flat and (B) slope blocks. Different lowercase letters denote significant difference among different grassland management types at P< 0.05. TG, Traditional grazing system; TH, Traditional haymaking system; MG, Mixed grazing system.
图3 传统放牧和混合利用系统中, 羊草群落在不同载畜率下的地上净生长量变化(A: 采用方法a、b计算)和相对地上净生长量变化(B: 采用方法c、d计算; C: 采用方法e、f计算)。TGF、TGS、MGF、MGS所代表的放牧系统同图1。
Fig. 3 Aboveground net productivity (A: Method a, b) and relative aboveground net productivity (B: Method c, d; C: Method e, f) of Leymus chinensis community at different stocking rates in traditional and mixed grazing systems. The abbreviations denote the same grazing systems as Fig. 1.
方法 Method | 载畜率 Stocking rate | 传统放牧平地系统TGF | 传统放牧坡地系统TGS | 混合利用平地系统MGF | 混合利用坡地系统MGS |
---|---|---|---|---|---|
Method b | 0 | 151.05a | 153.54a | 171.77a | 188.63ab |
1.5 | 212.55a | 138.19ab | 95.93bcd | 241.38a | |
3.0 | 178.95a | 137.86ab | 112.26b | 128.2b | |
4.5 | 145.5a | 151.55ab | 108.98bc | 109.21b | |
6.0 | 163.65a | 122.02ab | 104.74bcd | 155.52b | |
7.5 | 130.03a | 128.27ab | 51.14d | 121.43b | |
9.0 | 118.05a | 78.67b | 56.69cd | 142.33b | |
Method d | 0 | 1ab | 1a | 1a | 1ab |
1.5 | 1.14a | 0.89a | 0.67ab | 1.18a | |
3.0 | 0.53b | 0.92a | 0.61bc | 0.68bc | |
4.5 | 0.66ab | 0.8a | 0.4bc | 0.481c | |
6.0 | 0.69ab | 0.65a | 0.54bc | 0.51c | |
7.5 | 0.57ab | 0.62a | 0.31c | 0.77bc | |
9.0 | 0.57ab | 0.51a | 0.31c | 0.64bc | |
Method f | 0 | 1a | 1ab | 1a | 1b |
1.5 | 1.18a | 1.02ab | 0.82a | 1.59a | |
3.0 | 1.39a | 1.06ab | 0.78a | 0.83bc | |
4.5 | 0.82a | 1.34b | 0.79a | 0.74bc | |
6.0 | 0.7a | 1.15ab | 0.76a | 0.64c | |
7.5 | 0.98a | 1.1ab | 0.31b | 0.95b | |
9.0 | 1.01a | 0.48a | 0.22b | 0.56c |
表3 传统放牧和混合利用系统中, 不同载畜率下羊草群落的地上净生长量(g/m2, 采用方法b计算)和相对地上净生长量(采用方法d、f计算)
Table 3 Aboveground net productivity (using Method b) and relative aboveground net productivity (using Method d and f) of Leymus chinensis community at different stocking rates in traditional and mixed grazing systems
方法 Method | 载畜率 Stocking rate | 传统放牧平地系统TGF | 传统放牧坡地系统TGS | 混合利用平地系统MGF | 混合利用坡地系统MGS |
---|---|---|---|---|---|
Method b | 0 | 151.05a | 153.54a | 171.77a | 188.63ab |
1.5 | 212.55a | 138.19ab | 95.93bcd | 241.38a | |
3.0 | 178.95a | 137.86ab | 112.26b | 128.2b | |
4.5 | 145.5a | 151.55ab | 108.98bc | 109.21b | |
6.0 | 163.65a | 122.02ab | 104.74bcd | 155.52b | |
7.5 | 130.03a | 128.27ab | 51.14d | 121.43b | |
9.0 | 118.05a | 78.67b | 56.69cd | 142.33b | |
Method d | 0 | 1ab | 1a | 1a | 1ab |
1.5 | 1.14a | 0.89a | 0.67ab | 1.18a | |
3.0 | 0.53b | 0.92a | 0.61bc | 0.68bc | |
4.5 | 0.66ab | 0.8a | 0.4bc | 0.481c | |
6.0 | 0.69ab | 0.65a | 0.54bc | 0.51c | |
7.5 | 0.57ab | 0.62a | 0.31c | 0.77bc | |
9.0 | 0.57ab | 0.51a | 0.31c | 0.64bc | |
Method f | 0 | 1a | 1ab | 1a | 1b |
1.5 | 1.18a | 1.02ab | 0.82a | 1.59a | |
3.0 | 1.39a | 1.06ab | 0.78a | 0.83bc | |
4.5 | 0.82a | 1.34b | 0.79a | 0.74bc | |
6.0 | 0.7a | 1.15ab | 0.76a | 0.64c | |
7.5 | 0.98a | 1.1ab | 0.31b | 0.95b | |
9.0 | 1.01a | 0.48a | 0.22b | 0.56c |
图4 传统放牧和混合利用系统中, 羊草群落在不同相对载畜率下的地上净生长量变化(采用方法h计算)。TGF、TGS、MGF、MGS所代表的放牧系统同图1。
Fig. 4 Aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method h). The abbreviations denote the same grazing systems as Fig. 1.
图5 传统放牧和混合利用系统中, 羊草群落在不同相对载畜率下的相对地上净生长量变化(采用方法j计算)。TGF、TGS、MGF、MGS所代表的放牧系统同图1。
Fig.5 Relative aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method j). The abbreviations denote the same grazing systems as Fig. 1.
图6 传统放牧和混合利用系统中, 羊草群落在不同相对载畜率下的地上净生长量变化(采用方法l计算)。TGF、TGS、MGF、MGS所代表的放牧系统同图1。
Fig. 6 Aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method l). The abbreviations denote the same grazing systems as Fig. 1.
图7 传统放牧和混合利用系统中, 羊草群落在不同相对载畜率下的相对地上净生长量变化(采用方法n计算)。TGF、TGS、MGF、MGS所代表的放牧系统同图1。
Fig. 7 Relative aboveground net productivity at different relative stocking rates in traditional and mixed grazing systems (Method n). The abbreviations denote the same grazing systems as Fig. 1.
[1] | An Y (安渊), Li B (李博), Yang C (杨持), Xu Z (徐柱), Yan ZJ (阎志坚), Han GD (韩国栋) (2000) Research on the grassland production and its sustainable use on Neimongol steppe dominated by Stipa grandis III―Research on plant compensatory growth. Acta Scientiarum Naturalium Universitatis NeiMongol (内蒙古大学学报), 31, 608-612. (in Chinese with English abstract) |
[2] | Augustine DJ, McNaughton SJ (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems, 9, 1242-1256. |
[3] | Bai HS (白哈斯) (2007) Influence of different stocking rates on herbage regeneration and net primary productivity in lowland meadow. Arid Zone Research (干旱区研究), 24, 826-829. (in Chinese with English abstract) |
[4] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[5] | Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44, 1023-1034. |
[6] | Bossuyt B, De Fre B, Hoffmann M (2005) Abundance and flowering success patterns in a short-term grazed grassland: early evidence of facilitation. Journal of Ecology, 93, 1104-1114. |
[7] | Chen ZH (陈佐忠), Wang SP (汪诗平) (2000) Steppe Ecosystems in China (中国典型草原生态系统). Science Press, Beijing. (in Chinese) |
[8] | Chen ZZ (陈佐忠) (1988) Topgraphy and climate of Xilin River basin. In: Research on Grassland Ecosystem, No. 3, (草原生态系统研究) (ed. Inner Mongolia Grassland Ecosystem Research Station of Chinese Academy of Sciences (中国科学院内蒙古草原生态系统定位站)), pp.13-22. Science Press, Beijing. (in Chinese) |
[9] | De Mazancourt C, Loreau M, Abbadie L (1998) Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology, 79, 2242-2252. |
[10] | del Pozo A, Ovalle C, Casado MA, Acosta B, de Miguel JM (2006) Effects of grazing intensity in grasslands of the Espinal of central Chile. Journal of Vegetation Science, 17, 791-798. |
[11] | Esmaeili MM, Bonis A, Bouzille JB, Mony C, Benot ML (2009) Consequence of ramet defoliation on plant clonal propagation and biomass allocation: example of five rhizomatous grassland species. Flora, 204, 25-33. |
[12] |
Garibaldi LA, Semmartin M, Chaneton EJ (2007) Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia, 151, 650-662.
DOI URL PMID |
[13] | Han GD (韩国栋), Li B (李博), Wei ZJ (卫智军), Yang J (杨静), Lü X (吕雄), Li H (李宏) (1999) Plant compensatory growth in the grazing system of Stipa breviflora desert steppe. I. Plant net productivity. Acta Agrestia Sinica (草地学报), 7, 1-7. (in Chinese with English abstract) |
[14] |
Hayashi M, Fujita N, Yamauchi A (2007) Theory of grazing optimization in which herbivory improves photosynthetic ability. Journal of Theoretical Biology, 248, 367-376.
DOI URL PMID |
[15] | Ilmarinen K, Mikola J, Nissinen K, Vestberg M (2009) Role of soil organisms in the maintenance of species-rich seminatural grasslands through mowing. Restoration Ecology, 17, 78-88. |
[16] | Kleijn D, Steinger T (2002) Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. Journal of Ecology, 90, 360-370. |
[17] | Kurz I, O'Reilly CD, Tunney H (2006) Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland. Agriculture Ecosystems & Environment, 113, 378-390. |
[18] | Leriche H, Le Roux X, Desnoyers F, Benest D, Simioni G, Abbadie L (2003) Grass response to clipping in an African savanna: testing the grazing optimization hypothesis. Ecological Applications 13, 1346-1354. |
[19] | Li JH (李金花), Li ZQ (李镇清), Ren JZ (任继周) (2002) The effects of grazing on grassland plants. Acta Prataculturae Sinica (草业学报), 11(1),4-11. (in Chinese with English abstract) |
[20] | Li YH (李永宏) (1988) The divergence and convergence of Leymus chinensis steppe and Stipa grandis steppe under the grazing influence in Xilin River valley, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学报), 12, 189-196. (in Chinese with English abstract) |
[21] | McNaughton SJ (1979) Grazing as optimization process: grass-ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703. |
[22] | Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366. |
[23] | Schonbach P, Wan H, Schiborra A, Gierus M, Bai Y, Muller K, Glindemann T, Wang C, Susenbeth A, Taube F (2009) Short-term management and stocking rate effects of grazing sheep on herbage quality and productivity of Inner Mongolia steppe. Crop & Pasture Science, 60, 963-974. |
[24] | Semmartin M, Garibaldi LA, Chaneton EJ (2008) Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant and Soil, 303, 177-189. |
[25] | Sternberg M, Gutman M, Perevolotsky A, Kigel J (2003) Effects of grazing on soil seed bank dynamics: an approach with functional groups. Journal of Vegetation Science, 14, 375-386. |
[26] | Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149. |
[27] | Wang RZ (王仁忠) (1998) A study on the effects of grazing and mowing disturbances in Leymus chinensis grasslands in Songnen Plain. Acta Ecologica Sinica (生态学报), 18, 210-213. (in Chinese with English abstract) |
[28] | Wang SP (汪诗平), Li YH (李永宏) (1999) Degradation mechanism of typical grassland in Inner Mongolia. Chinese Journal of Applied Ecology (应用生态学报), 10, 437-441. (in Chinese with English abstract) |
[29] | Wang SP (汪诗平), Li YH (李永宏), Wang YF(王艳芬), Han YH (韩苑鸿) (1998) The succession of Artemisia frigid rangeland and multivariation analysis under different stocking rates in Inner Mongolia. Acta Agrestia Sinica (草地学报), 6, 299-305. (in Chinese with English abstract) |
[30] | Wang W (王炜), Liu ZL (刘钟龄), Hao DY (郝敦元), Liang CZ (梁存柱) (1996a) Research on the restoring succession of the degenerated grassland in Inner Mongolia. I. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica (植物生态学报), 20, 449-459. (in Chinese with English abstract) |
[31] | Wang W (王炜), Liu ZL (刘钟龄), Hao DY (郝敦元), Liang CZ (梁存柱) (1996b) Research on the restoring succession of the degenerated grassland in Inner Mongolia.Ⅱ. Analysis of the restoring succession. Acta Phytoecologica Sinica (植物生态学报), 20, 460-471. (in Chinese with English abstract) |
[32] | Wang YF (王艳芬), Wang SP (汪诗平) (1999) Influence of different stocking rates on aboveground present biomass and herbage quality in Inner Mongolia steppe. Acta Prataculturae Sinica (草业学报), 8(1),15-20. (in Chinese with English abstract) |
[33] | Wang SP (汪诗平), Wang YF (王艳芬) (2001) Study on over-compensation growth of Cleistogenes squarrosa population in Inner Mongolia steppe. Acta Botanica Sinica (植物学报), 43, 413-418. (in Chinese with English abstract) |
[34] | Xie YZ, Wittig R (2004) The impact of grazing intensity on soil characteristics of Stipa grandis and Stipa bungeana steppe in northern China (Autonomous Region of Ningxia). Acta Oecologica, 25, 197-204. |
[35] | Xing Q (邢旗), Shuang Q (双全), Jin Y(金玉), Song M (松梅) (2004) Studies on matter dynamics and plant compensatory growth under different grazing systems on meadow steppe. Grassland of China (中国草地), 26(5),26-31. (in Chinese with English abstract) |
[36] | Zhou BR (周秉荣), Ma ZT (马宗泰), Li HM (李红梅), He XL (贺晓龙) (2007) Effects of cutting on forage compensatory growth in alpine meadow. Pratacultural Science (草业科学), 24(4),79-83. (in Chinese with English abstract) |
[37] | Zhu GL (朱桂林), Wei ZJ (卫智军), Yang J (杨静), Yang SM (杨尚明) (2002) The effects of grazing systems on the aboveground biomass of the plants in Stipa breviflora community. Grassland of China (中国草地), 24(3),15-19. (in Chinese with English abstract) |
[1] | 赵秋杰, 郭辉军, 孟广涛, 钟明川, 尹俊, 刘倬橙, 李品荣, 陈力, 陶毅, 秋生, 王红, 赵延会. 放牧对蜜蜂的影响及其生态修复建议[J]. 生物多样性, 2023, 31(5): 23037-. |
[2] | 王一晴, 马子驭, 王刚, 刘炎林, 宋大昭, 刘蓓蓓, 李露, 范新国, 黄巧雯, 李晟. 太行山华北豹袭击家畜的时空特点与管理建议: 以山西省和顺县为例[J]. 生物多样性, 2022, 30(9): 21510-. |
[3] | 胡远芳, 李斌强, 梁丹, 李兴权, 刘兰香, 杨家伟, 罗旭. 人为干扰对白腹锦鸡活动节律的影响[J]. 生物多样性, 2022, 30(8): 21484-. |
[4] | 张宇, 王露雨, 向昌林, 段美春, 张志升. 不同放牧强度对赛罕乌拉草原蜘蛛多样性的影响[J]. 生物多样性, 2021, 29(4): 467-476. |
[5] | 王鑫厅, 柴静, 姜超, 邰阳, 迟延艳, 张维华, 刘芳, 李素英. 典型草原大针茅种群空间格局及对长期过度放牧的响应[J]. 生物多样性, 2020, 28(2): 128-134. |
[6] | 史晓昀,施小刚,胡强,官天培,付强,张剑,姚蒙,李晟. 四川邛崃山脉雪豹与散放牦牛潜在分布重叠与捕食风险评估[J]. 生物多样性, 2019, 27(9): 951-959. |
[7] | 陈星, 赵联军, 胡茜茜, 罗春平, 梁春平, 蒋仕伟, 梁磊, 郑维超, 官天培. 基于地形的牲畜空间利用特征及干扰评价——以王朗国家级自然保护区为例[J]. 生物多样性, 2019, 27(6): 630-637. |
[8] | 张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性, 2018, 26(2): 111-129. |
[9] | 祁威, 摆万奇, 张镱锂, 吴雪, 李兰晖, 丁明军, 周才平. 生态工程实施对羌塘和三江源国家级自然保护区植被净初级生产力的影响[J]. 生物多样性, 2016, 24(2): 127-135. |
[10] | 王国宏, 王小平, 张维康, 李贺, 杜连海, 吴记贵. 北京市自然保护区植物群落对干扰胁迫的抵抗力分析[J]. 生物多样性, 2013, 21(2): 153-162. |
[11] | 高贤明, 马克平, 陈灵芝, 李迪强. 旅游对北京东灵山亚高山草甸物种多样性影响的初步研究[J]. 生物多样性, 2002, 10(2): 189-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn