生物多样性 ›› 2009, Vol. 17 ›› Issue (6): 625-634. DOI: 10.3724/SP.J.1003.2009.09162
所属专题: 群落中的物种多样性:格局与机制
收稿日期:
2009-06-22
接受日期:
2009-11-07
出版日期:
2009-11-20
发布日期:
2009-11-20
通讯作者:
方精云
作者简介:
*E-mail: jyfang@urban.pku.edu.cn基金资助:
Zhiheng Wang, Zhiyao Tang, Jingyun Fang*()
Received:
2009-06-22
Accepted:
2009-11-07
Online:
2009-11-20
Published:
2009-11-20
Contact:
Jingyun Fang
摘要:
新陈代谢是生物的基本生理过程。生态学代谢理论(metabolic theory of ecology)基于生物个体大小和环境温度对个体新陈代谢过程的影响, 使用尺度推移(scaling)的方法来解释多种生态学格局和过程。James Borwn等将这一理论用于解释物种多样性的大尺度格局, 并从机制上解释了物种多样性与环境温度的关系。这一理论提出了两个明确的预测: (1)物种多样性的对数与绝对温度的倒数之间呈线性关系; (2) 这一线性关系的斜率为-0.6至-0.7。这一理论自提出以来, 饱受争议, 经过了正反两方面经验数据的检验, 目前仍未形成一致的结论。虽然这一理论仍面临着一些有待解决的问题, 但它以崭新的思路和方法有别于以往的基于统计学方法的研究。人们过去对该理论的实证检验忽略了两个重要的约束条件, 即除温度以外的环境条件处于理想状态和群落处于平衡状态, 而这两个约束条件是理解该理论的基础。本文对生态学代谢理论的理论框架、预测和含义, 以及以往的检验结果进行阐述, 在此基础上提出了作者对该理论的若干认识和未来研究中应考虑的若干问题。
王志恒, 唐志尧, 方精云 (2009) 生态学代谢理论: 基于个体新陈代谢过程解释物种多样性的地理格局. 生物多样性, 17, 625-634. DOI: 10.3724/SP.J.1003.2009.09162.
Zhiheng Wang, Zhiyao Tang, Jingyun Fang (2009) Metabolic theory of ecology: an explanation for species richness patterns based on the metabolic processes of organisms. Biodiversity Science, 17, 625-634. DOI: 10.3724/SP.J.1003.2009.09162.
图1 北美树木(A)和两栖动物(B)物种多样性的对数与绝对温度倒数(1,000/T)的关系(引自Allen et al., 2002)
Fig. 1 Changes in log-transformed species richness of (A) trees and (B) amphibians in North America with reciprocal of absolute temperature (i.e. 1,000/T) (Allen et al., 2002).
图2 中国和北美地区树木物种多样性对数与1/kT的关系(引自Wang et al., 2009)。图中, 中国树木物种多样性根据“中国木本植物分布数据库”计算, 北美树木多样性则根据“北美树木分布图集”计算; 空间分辨率为50 km × 50 km至400 km × 400 km; E为个体新陈代谢的活化能, 也即不同分辨率下物种丰富度对数与1/kT线性关系斜率的绝对值。
Fig. 2 Relationships between log-transformed tree species richness and 1/kT in China (A, B, C, D) and North America (E, F, G, H) (Wang et al., 2009). Species richness of trees was estimated using the Database of China’s Woody Plants for China, and Atlas of United States Trees for North America. Grid sizes ranging from 50 km × 50 km to 400 km × 400 km were used to evaluate the effects of spatial scales. E values (i.e. the activity energy) represented the absolute values of the slopes between log-transformed tree species richness and 1/kT.
图3 水分对代谢理论预测能力的影响(根据Wang et al., 2009修改)。图中, 纵轴为使用代谢理论模型预测中国和北美地区树木物种丰富度时的残差, 横轴为年降水量的对数, 物种多样性的空间分辨率为50 km × 50 km。在干旱地区, 代谢理论模型显著高估物种丰富度; 而在湿润地区, 则显著低估物种丰富度。
Fig. 3 Influence of precipitation on the MTE predictions (modified from Wang et al., 2009). Y-axis represents residuals of the MTE models between log-transformed tree diversity and 1/kT using grids of 50 km × 50 km, while the X-axis represents the log-transformed precipitation for each grid. The result indicates that the MTE models tend to overestimate the tree diversity in arid regions, but underestimate in humid regions.
[1] | Algar AC, Kerr JT, Currie DJ (2007) A test of metabolic theory as the mechanism underlying broad-scale species-richness gradients. Global Ecology and Biogeography, 16, 170-178. |
[2] |
Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecology Letters, 9, 947-954.
DOI URL PMID |
[3] |
Allen AP, Savage VM (2007) Setting the absolute tempo of biodiversity dynamics. Ecology Letters, 10, 637-646.
URL PMID |
[4] |
Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297, 1545-1548.
DOI URL PMID |
[5] | Allen AP, Brown JH, Gillooly JF (2003) Response to comment on “global biodiversity, biochemical kinetics, and the energetic-equivalence rule”. Science, 299, 346c. |
[6] | Allen AP, Gillooly JF, Brown JH (2007) Recasting the species-energy hypothesis: the different roles of kinetic and potential energy in regulating biodiversity, In: Scaling Biodiversity (eds Storch D, Marquet PA, Brown JH), pp. 283-299. Cambridge University Press, Cambridge. |
[7] | Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences, USA, 103, 9130-9135. |
[8] | Anderson-Teixeira KJ, Vitousek PM, Brown JH (2008) Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawaii. Proceedings of the National Academy of Sciences, USA, 105, 228-233. |
[9] | Begon M, Firbank L, Wall R (1986) Is there a self-thinning rule for animal populations? Oikos, 46, 122-124. |
[10] | Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions, 5, 165-174. |
[11] | Brown JH (1995) Macroecology. University of Chicago Press, Chicago. |
[12] | Brown JH, Gillooly JF, West GB, Savage VM (2003a) The next step in macroecology: from general empirical patterns to universal ecological laws. In: Macroecology: Concepts and Consequences (eds Blackburn TM, Gaston KJ), pp. 408-424. Cambridge University Press, Cambridge. |
[13] | Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer Associates, Sunderland, Massachusetts. |
[14] |
Brown JH, Allen AP, Gillooly JF (2003b) Response: heat and biodiversity. Science, 299, 512-513.
URL PMID |
[15] | Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. |
[16] |
Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences, 273, 2257-2266.
DOI URL PMID |
[17] | Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134. |
[18] | Damuth J (1987) Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. Biological Journal of the Linnean Society, 31, 193-246. |
[19] | Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature, 395, 163-165. |
[20] | Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gillooly JF (2003) Scaling metabolism from organisms to ecosystems. Nature, 423, 639-642. |
[21] |
Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature, 410, 655-660.
DOI URL PMID |
[22] |
Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
DOI URL PMID |
[23] | Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature, 401, 907-911. |
[24] |
Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews, 80, 1-25.
DOI URL PMID |
[25] | Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences, USA, 105, 7774-7778. |
[26] | Gaston KJ, Blackburn TM (1996) Global scale macroecology: interactions between population size, geographic range size and body size in the anseriformes. Journal of Animal Ecology, 65, 701-714. |
[27] |
Gillooly JF, Allen AP (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88, 1890-1894.
DOI URL PMID |
[28] | Gillooly JF, Allen AP, West GB, Brown JH (2005) The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences, USA, 102, 140-145. |
[29] |
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science, 293, 2248-2251.
DOI URL PMID |
[30] |
Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature, 417, 70-73.
DOI URL PMID |
[31] |
Guiot C, Degiorgis PG, Delsanto PP, Gabriele P, Deisboeck TS (2003) Does tumor growth follow a “universal law”? Journal of Theoretical Biology, 225, 147-151.
URL PMID |
[32] | Gurevitch J, Scheiner S, Fox G (2002) The Ecology of Plants. Sinauer Associates Incorporated, Sunderland, MA. |
[33] | Hairston NG (1969) On the relative abundance of species. Ecology, 50, 1091-1094. |
[34] | Hawkins BA, Albuquerque FS, Araújo MB, Beck J, Bini LM, Cabrero-Sanúdo FJ, Castro-Parga I, Diniz-Filho JAF, Ferrer-Castán D, Field R, Gómez J, Hortal J, Kerr JT, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Moreno JC, Olalla-Tárraga M, Pausas JG, Qian H, Rahbek C, Rodríguez MA, Sanders NJ, Williams P (2007a) A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology, 88, 1877-1888. |
[35] |
Hawkins BA, Diniz-Filho JAF, Bini LM, Araújo MB, Field R, Hortal J, Kerr JT, Rahbek C, Rodríguez MA, Sanders NJ (2007b) Metabolic theory and diversity gradients: where do we go from here? Ecology, 88, 1898-1902.
URL PMID |
[36] | Hawkins BA, Porter EE, Diniz JAF (2003) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84, 1608-1623. |
[37] | Hillebrand H, Azovsky AI (2001) Body size determines the strength of the latitudinal diversity gradient. Ecography, 24, 251-256. |
[38] |
Hou C, Zuo W, Moses ME, Woodruff WH, Brown JH, West GB (2008) Energy uptake and allocation during ontogeny. Science, 322, 736-739.
DOI URL PMID |
[39] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton and Oxford. |
[40] |
Hunt G, Cronin TM, Roy K (2005) Species-energy relationship in the deep sea: a test using the Quaternary fossil record. Ecology Letters, 8, 739-747.
DOI URL |
[41] | Huston MA (2003) Heat and biodiversity. Science, 299, 512. |
[42] |
Kaspari M, Ward PS, Yuan M (2004) Energy gradients and the geographic distribution of local ant diversity. Oecologia, 140, 407-413.
DOI URL PMID |
[43] | Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge. |
[44] |
Latimer AM (2007) Geography and resource limitation complicate metabolism-based predictions of species richness. Ecology, 88, 1895-1898.
DOI URL PMID |
[45] |
Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur Award lecture. Ecology, 73, 1943-1967.
DOI URL |
[46] |
Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology, 82, 2381-2396.
DOI URL |
[47] |
Moses ME, Brown JH (2003) Allometry of human fertility and energy use. Ecology Letters, 6, 295-300.
DOI URL |
[48] |
Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature, 453, 216-219.
DOI URL PMID |
[49] |
Pautasso M, Gaston KJ (2005) Resources and global avian assemblage structure in forests. Ecology Letters, 8, 282-289.
DOI URL |
[50] | Peters RH (1983) The Ecological Implications of Body Size. Cambridge University Press, Cambridge. |
[51] |
Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.
DOI URL |
[52] |
Rahbek C, Gotelli NJ, Colwell RK, Entsminger GL, Rangel TFLVB, Graves GR (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274, 165-174.
DOI URL PMID |
[53] |
Rajaniemi TK (2003) Explaining productivity-diversity relationships in plants. Oikos, 101, 449-457.
DOI URL |
[54] |
Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514-527.
DOI URL |
[55] | Roy K, Jablonski D, Valentine J (2004) Beyond species richness: biogeographic patterns and biodiversity dynamics using other metrics of diversity. In: Frontiers of Biogeography: New Directions in the Geography of Nature, pp. 151-170. Sinauer Associates, Sunderland, Massachusetts. |
[56] |
Sanders NJ, Lessard J-P, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16, 640-649.
DOI URL |
[57] |
Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. The American Naturalist, 163, 429-441.
DOI URL PMID |
[58] |
Schulze ED, Kelliher FM, Korner C, Floyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology and Systematics, 25, 629-660.
DOI URL |
[59] |
da Silva Cassemiro FA, de Souza Barreto B, Rangel TFLVB, Diniz-Filho JAF (2007) Non-stationarity, diversity gradients and the metabolic theory of ecology. Global Ecology and Biogeography, 16, 820-822.
DOI URL |
[60] |
Smith FA, Brown JH, Haskell JP, Lyons SK, Alroy J, Charnov EL, Dayan T, Enquist BJ, Ernest SKM, Hadly EA, Jablonski D, Jones KE, Kaufman DM, Marquet PA, Maurer BA, Niklas KJ, Porter WP, Roy K, Tiffney B, Willig MR (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. The American Naturalist, 163, 672-691.
URL PMID |
[61] |
Stegen JC, Enquist BJ, Ferriere R (2009) Advancing the metabolic theory of biodiversity. Ecology Letters, 12, 1001-1015.
DOI URL PMID |
[62] |
Storch D (2003) Comment on “Global biodiversity, biochemical kinetics, and the energetic-equivalence rule”. Science, 299, 346b.
DOI URL |
[63] |
Tilman D, HilleRisLambers J, Harpole S, Dybzinski R, Fargione J, Clark C, Lehman C (2004) Does metabolic theory apply to community ecology? It’s a matter of scale. Ecology, 85, 1797-1799.
DOI URL |
[64] |
Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257-300.
DOI URL |
[65] |
Wang ZH, Brown JH, Tang ZY, Fang JY (2009) Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proceedings of the National Academy of Sciences, USA, 106, 13388-13392.
DOI URL |
[66] |
Wang ZH (王志恒), Tang ZY (唐志尧), Fang JY (方精云) (2009) The species-energy hypothesis as a mechanism for the large-scale species richness patterns. Biodiversity Science (生物多样性), 17, 613-624. (in Chinese with English abstract)
DOI URL |
[67] | West GB (2007) Innovation and growth: size matters. Harvard Business Review, 85, 34-35. |
[68] |
West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126.
URL PMID |
[69] |
West GB, Brown JH, Enquist BJ (1999a) A general model for the structure and allometry of plant vascular systems. Nature, 400, 664-667.
DOI URL |
[70] |
West GB, Brown JH, Enquist BJ (1999b) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284, 1677-1679.
DOI URL PMID |
[71] |
West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature, 413, 628-631.
DOI URL PMID |
[72] | Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. Journal of Biology, Osaka City University, 14, 107-129. |
[73] |
Zhang Q ( 张强), Ma RY (马仁义), Ji MF (姬明飞), Deng JM (邓建明) (2008) Advances of species richness regulated by the metabolic rate. Biodiversity Science (生物多样性), 16, 437-445. (in Chinese with English abstract)
DOI URL |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[5] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[6] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[7] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[8] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[9] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[10] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[11] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[12] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[13] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[14] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[15] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn