生物多样性

• • 上一篇    下一篇

AI和LLMs在生物多样性保护研究和实践中的应用与挑战

周宣宏, 杨军*   

  1. 清华大学地球系统科学系,东亚迁徙鸟类与栖息地生态学教育部野外科学观测研究站,清华大学全球变化研究院
  • 收稿日期:2025-05-15 修回日期:2025-07-26
  • 通讯作者: 杨军

Applications and Challenges of AI and LLMs in Biodiversity Conservation Research and Practices

Xuanhong Zhou, Jun Yang*   

  1. , Department of Earth System Science, Institute for Global Change Studies, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University 100084, China
  • Received:2025-05-15 Revised:2025-07-26
  • Contact: Jun Yang

摘要: 生物多样性保护对于维护生态安全和支撑人类社会的可持续发展具有重要意义。然而生态系统内错综复杂的相互作用关系和人为活动、气候变化等外部因子的复合影响给生物多样性保护的研究和实践工作带来挑战。人工智能(Artificial Intelligence, AI)和大语言模型(Large Language Models,LLMs) 的兴起为生物多样性保护研究和实践中的生物多样性知识发现、生态系统建模、监测与评估、保护决策以及保护行动等方面提供了新的工具。本文总结了AI和LLMs在上述方向的应用进展,分析了当前在生物多样性保护研究和实践中应用AI和LLMs时所面临的数据质量问题、模型响应速度、生态系统异质性及伦理和数据安全等挑战,并提出未来应聚焦于构建高质量的生物多样性多模态数据集,以及开发适合于生物多样性保护的领域大模型等优先研究方向。文章可为AI和LLMs驱动的生物多样性保护研究和实践提供一定参考。

关键词: 人工智能, 大语言模型, 生物多样性保护, 知识发现, 保护决策

Abstract

Background & Aims: Biodiversity conservation is essential for ecological security and sustainable human development. Nevertheless, the intricate interactions within ecosystems and the impact of external influences like human actions and climate change create substantial hurdles for conservation efforts. The advent of Artificial Intelligence (AI) and Large Language Models (LLMs) offers new opportunities in this field. This study aims to review how these technologies are being used. 

Methods: We discussed recent progress in using AI and LLMs for biodiversity conservation research and practice. Our focus was on AI and LLMs in knowledge synthesis and discovery, ecosystem modeling, assessment and monitoring, decision-making, and fieldwork. 

Results & Conclusion: There is great potential for AI and LLMs in biodiversity conservation research and practices. Despite the promise, challenges such as data quality, model response times, ecosystem heterogeneity, ethical considerations, and data security remain. Future research should focus on developing specialized AI models and building high-quality, multimodal biodiversity datasets to effectively address these challenges.

Key words: Artificial Intelligence, Large Language Models, Biodiversity Conservation, Knowledge Discovery, Conservation Decision-making