
生物多样性 ›› 2025, Vol. 33 ›› Issue (8): 25142. DOI: 10.17520/biods.2025142 cstr: 32101.14.biods.2025142
牛莉杰1,3(
), 侯英英1,3, 文诗嘉1, 张海萍2,3, 曲比阿且1,3, 付元生1,4, 王红1, 任宗昕1,3,*(
)
收稿日期:2025-04-18
接受日期:2025-07-07
出版日期:2025-08-20
发布日期:2025-09-17
通讯作者:
*E-mail: renzongxin@mail.kib.ac.cn
基金资助:
Lijie Niu1,3(
), Yingying Hou1,3, Shijia Wen1, Haiping Zhang2,3, Aqie Qubi1,3, Yuansheng Fu1,4, Hong Wang1, Zongxin Ren1,3,*(
)
Received:2025-04-18
Accepted:2025-07-07
Online:2025-08-20
Published:2025-09-17
Contact:
*E-mail: renzongxin@mail.kib.ac.cn
Supported by:摘要:
花蜜作为大多数开花植物提供给传粉动物的重要报酬和能量来源, 是植物-传粉动物互作关系形成的关键, 深刻影响着生态系统功能和粮食安全。在全球变化背景下, 植物-传粉动物互作网络正面临前所未有的挑战, 对传粉动物健康的担忧使得花蜜的研究备受关注。本文系统综述了花蜜分泌规律的研究进展, 重点关注花蜜分泌的动态、生产代价及其调控机制。研究表明, 花蜜分泌是植物应对传粉环境和资源权衡的投资行为, 通过分泌花蜜可吸引和操控传粉动物的访花从而实现传粉; 花蜜分泌呈现显著的时空动态变化, 这一过程受到植物内在生理机制和外部环境因素的双重调控; 花蜜生产是植物的重要投资代价, 但相应的实验证据还很少; 花蜜回收是植物优化资源分配的重要策略, 但是分泌与回收这两个相反的过程是否同时发生并调控花蜜特征的机制和生态意义尚需进一步探索。本文提出未来研究方向应着重关注花蜜的最基础问题: (1)花蜜的分泌行为机制: 解析花蜜分泌与回收的动态平衡机制及其调控规律; (2)花蜜对传粉动物行为的影响和操控及其对传粉综合征的塑造; (3)花蜜的投资代价: 探讨花蜜生产的能量代谢基础及其资源分配代价; (4)花蜜资源景观分布和变迁对传粉网络稳定性和粮食安全的影响。这些研究将有助于深入理解植物-传粉动物互作系统的维持机制及其对全球变化的响应策略。
牛莉杰, 侯英英, 文诗嘉, 张海萍, 曲比阿且, 付元生, 王红, 任宗昕 (2025) 花蜜的分泌行为、生产代价和调控. 生物多样性, 33, 25142. DOI: 10.17520/biods.2025142.
Lijie Niu, Yingying Hou, Shijia Wen, Haiping Zhang, Aqie Qubi, Yuansheng Fu, Hong Wang, Zongxin Ren (2025) Floral nectar: Secretion behavior, cost and regulation. Biodiversity Science, 33, 25142. DOI: 10.17520/biods.2025142.
图1 开花植物花朵及其花蜜多样性。(A)早春开花的梨花花蜜粘稠; (B)白娟梅的花蜜呈晶体状; (C)大白花杜鹃的花蜜位于花冠基部; (D)高盆樱桃的花蜜量大, 为鸟类和蜂类传粉; (E)獐牙菜的蜜腺是花被片中部呈花药状的两个黄色腺斑; (F)升麻的花被片演化为蜜腺, 分泌蜜滴; (G)多星韭的花蜜位于子房基部; (H)鸟类传粉的米团花的花蜜呈黑色; (I)澳大利亚分布的兰科植物Corunastylis fimbriata的花蜜位于合蕊柱的耳状裂片的顶端。红色箭头标示花蜜或蜜腺。
Fig. 1 Floral nectar and nectaries diversity in flowering plants. A, Sticky floral nectar of Pyrus spp. in early spring; B, Crystallized sugar on the nectaries of Exochorda racemosa; C, Nectar drops at the base of corolla of Rhododendron decorum; D, Flowers of Prunus cerasoides produce a large amount of diluted nectar, it is pollinated by birds and bees; E, The nectaries of Swertia bimaculata locate at the middle of tepals with two yellow anther-like marks; F, Tepals of Actaea cimicifuga have evolved into nectaries, secreting nectar drops; G, Nectar drops at the base of ovary of Allium wallichii; H, Flowers of bird pollinated Leucosceptrum canum contain black colored nectar; I, Nectar droplet on the terminus of the auricle of column of Corunastylis fimbriata (Orchidaceae) from Australia. Red arrows indicate nectar or nectary.
图2 花蜜的分泌和调控示意图。A-B: 植物的蜜腺往往具有分泌和回收的功能, 从而实现花蜜特征的稳态, 但是花蜜的分泌与回收发生的时间和动态尚不清楚。一般而言, 花蜜的分泌均可分为从开始分泌、持续分泌和花末期分泌减少3个阶段, 而糖和水的回收可能有无回收、后期回吸和持续回收等。因此花蜜的分泌动态有3种模式, 模式一: 花蜜持续分泌无回收(C), 因此糖浓度和蜜量可能随时间持续积累(F); 模式二: 花蜜持续分泌, 花末期有花蜜回收(D), 花蜜动态呈现持续增加到花末期下降(G); 模式三: 分泌和回收同时发生(E), 花蜜动态维持一定的稳态(H)。C-H中, 花蜜特征值指体积、糖浓度或含糖量等。
Fig. 2 Floral nectar secretion and regulation. A-B, In general, floral nectaries of many plant species have secretion and reabsorption function to regulate nectar production to reach sugar homeostasis. However, time and dynamic of nectar secretion and reabsorption remain unclear. Usually, floral nectar production can be subdivided into three stages, beginning, continuous secretion and decline secretion at the end of floral longevity. Both sugar and water could be reabsorbed or not, absorption could happen at the end of flower age or begin since the secretion starts. Therefore, there are three major types of floral nectar dynamics. Type 1, Secretion but without reabsorption (C), floral nectar values (volume and sugar concentration) accumulated (F); Type 2, Secretion and reabsorption at the end of floral age (D), floral nectar values continue to increase but decline at the end of floral age (G); Type 3, Secretion and absorption at the same time (E), in this case, nectar values keep in a stable level until flower wilts (H). The characteristic value represents nectar volume, sugar concentration or sugar mass.
| [1] |
Adler LS, Wink M, Distl M, Lentz A (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecology Letters, 9, 960-967.
DOI PMID |
| [2] |
Aizen M, Basilio A (1998) Sex differential nectar secretion in protandrous Alstroemeria aurea (Alstroemeriaceae): Is production altered by pollen removal and receipt? American Journal of Botany, 85, 245.
PMID |
| [3] | Armbruster S (2006) Evolutionary and ecological aspects of specialized pollination:Views from the Arctic to the tropics. In: Plant-pollinator Interactions:From Specialization to Generalization (eds Waser N, Ollerton J), pp. 260-282. University of Chicago Press, Chicago. |
| [4] |
Ballarin CS, Fontúrbel FE, Rech AR, Oliveira PE, Goés GA, Polizello DS, Oliveira PH, Hachuy-Filho L, Amorim FW (2024) How many animal-pollinated angiosperms are nectar-producing? New Phytologist, 243, 2008-2020.
DOI URL |
| [5] |
Barberis M, Nepi M, Galloni M (2024) Floral nectar: Fifty years of new ecological perspectives beyond pollinator reward. Perspectives in Plant Ecology, Evolution and Systematics, 62, 125764.
DOI URL |
| [6] |
Barman M, Tenhaken R, Dötterl S (2024) Negative and sex-specific effects of drought on flower production, resources and pollinator visitation, but not on floral scent in monoecious Cucurbita pepo. New Phytologist, 244, 1013-1023.
DOI URL |
| [7] | Bernardello G (2007) A systematic survey of floral nectaries. In: Nectaries and Nectar (eds Nicolson SW, Nepi M, Pacini E), pp.19-128. Springer Netherlands, Dordrecht. |
| [8] |
Bernardello L, Galetto L, Rodriguez IG (1994) Reproductive biology, variability of nectar features and pollination of Combretum fruticosum (Combretaceae) in Argentina. Botanical Journal of the Linnean Society, 114, 293-308.
DOI URL |
| [9] |
Bertsch A (1983) Nectar production of Epilobium angustifolium L. at different air humidities: Nectar sugar in individual flowers and the optimal foraging theory. Oecologia, 59, 40-48.
DOI PMID |
| [10] | Bogo G, Fisogni A, Rabassa-Juvanteny J, Bortolotti L, Nepi M, Guarnieri M, Conte L, Galloni M (2021) Nectar chemistry is not only a plant’s affair: Floral visitors affect nectar sugar and amino acid composition. Oilos, 130, 1180-1192. |
| [11] | Bonnier G (1878) Les nectaires. Annales des Sciences Naturelles, Botanique, Série 6, 8, 5-212. |
| [12] |
Boose DL (1997) Sources of variation in floral nectar production rate in Epilobium canum (Onagraceae): Implications for natural selection. Oecologia, 110, 493-500.
DOI URL |
| [13] |
Brandenburg A, Dell’Olivo A, Bshary R, Kuhlemeier C (2009) The sweetest thing: Advances in nectar research. Current Opinion in Plant Biology, 12, 486-490.
DOI PMID |
| [14] |
Brito Vera GA, Pérez F (2024) Floral nectar (FN): Drivers of variability, causes, and consequences. Brazilian Journal of Botany, 47, 473-483.
DOI |
| [15] |
Bukovics P, Orosz-Kovács Z, Szabó L, Farkas Á, Bubán T (2003) Composition of floral nectar and its seasonal variability in sour cherry cultivars. Acta Botanica Hungarica, 45, 259-271.
DOI URL |
| [16] |
Burkle LA, Irwin RE (2010) Beyond biomass: Measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. Journal of Ecology, 98, 705-717.
DOI URL |
| [17] |
Búrquez A, Corbet SA (1991) Do flowers reabsorb nectar? Functional Ecology, 5, 369-379.
DOI URL |
| [18] |
Cardoso-Gustavson P, Davis AR (2015) Is nectar reabsorption restricted by the stalk cells of floral and extrafloral nectary trichomes? Plant Biology, 17, 134-146.
DOI PMID |
| [19] |
Carlson JE, Harms KE (2006) The evolution of gender-biased nectar production in hermaphroditic plants. The Botanical Review, 72, 179-205.
DOI URL |
| [20] | Castellanos MC, Wilson P, Thomson JD (2002) Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). American Journal of Botany, 89, 111-118. |
| [21] |
Cawoy V, Kinet JM, Jacquemart AL (2008) Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Annals of Botany, 102, 675-684.
DOI URL |
| [22] |
Clearwater MJ, Noe ST, Manley-Harris M, Truman GL, Gardyne S, Murray J, Obeng-Darko SA, Richardson SJ (2021) Nectary photosynthesis contributes to the production of mānuka (Leptospermum scoparium) floral nectar. New Phytologist, 232, 1703-1717.
DOI PMID |
| [23] |
Corbet SA (2003) Nectar sugar content: Estimating standing crop and secretion rate in the field. Apidologie, 34, 1-10.
DOI URL |
| [24] |
Corbet SA, Unwin DM, Prŷs-Jones OE (1979) Humidity, nectar and insect visits to flowers, with special reference to Crataegus, Tilia and Echium. Ecological Entomology, 4, 9-22.
DOI URL |
| [25] |
Corbet SA, Willmer PG (1981) The nectar of Justicia and Columnea: Composition and concentration in a humid tropical climate. Oecologia, 51, 412-418.
DOI PMID |
| [26] | Cruden RW, Hermann SM, Peterson S (1983) Patterns of nectar production and plant-pollinator coevolution. In: The Biology of Nectaries (eds Bentley B, Elias T), pp. 259. Columbia University Press, New York. |
| [27] | Davis JK, Aguirre LA, Barber NA, Stevenson PC, Adler LS (2019) From plant fungi to bee parasites: Mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology, 100, e02801. |
| [28] |
De la Barrera E, Nobel PS (2004) Nectar: Properties, floral aspects, and speculations on origin. Trends in Plant Science, 9, 65-69.
PMID |
| [29] |
Dong K, Dong Y, Su R, Zhang J, Qing Z, Yang X, Ren X, Ma Y, He S (2016) Effect of nectar reabsorption on plant nectar investment in Cerasus cerasoides. Current Science, 110, 251-256.
DOI URL |
| [30] |
Dreisig H (2012) How long to stay on a plant: The response of bumblebees to encountered nectar levels. Arthropod-Plant Interactions, 6, 315-325.
DOI URL |
| [31] |
Dutton EM, Luo EY, Cembrowski AR, Shore JS, Frederickson ME (2016) Three’s a crowd: Trade-offs between attracting pollinators and ant bodyguards with nectar rewards in Turnera. The American Naturalist, 188, 38-51.
DOI PMID |
| [32] | Fahn A (1979) Secretory Tissues in Plants. Academic Press, London. |
| [33] | Fahn A (2000) Structure and function of secretory cells. Advances in Botanical Research, 31, 37-75. |
| [34] |
Farkas Á, Orosz-Kovács Z (2003) Nectar secretion dynamics of Hungarian local pear cultivars. Plant Systematics and Evolution, 238, 57-67.
DOI URL |
| [35] | Fernandes N, Luz L, Alves Filho E, de Aragão FA, Zocolo G, Freitas B (2023) Differences in the chemical composition of Melon (Cucumis melo L.) nectar explain flower gender preference by its pollinator, Apis mellifera. Journal of the Brazilian Chemical Society, 34, 976-986. |
| [36] |
Fischer M, Matthies D (1997) Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae). American Journal of Botany, 84, 1685-1692.
PMID |
| [37] |
Galetto L, Araujo FP, Grilli G, Amarilla LD, Torres C, Sazima M (2018) Flower trade-offs derived from nectar investment in female reproduction of two Nicotiana species (Solanaceae). Acta Botanica Brasilica, 32, 473-478.
DOI URL |
| [38] |
Galetto L, Bernardello G (1993) Nectar secretion pattern and removal effects in three species of Solanaceae. Canadian Journal of Botany, 71, 1394-1398.
DOI URL |
| [39] |
Galetto L, Bernardello G (2004) Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Annals of Botany, 94, 269-280.
DOI URL |
| [40] |
Galetto L, Bernardello LM, Juliani H (1994) Characteristics of secretion of nectar in Pyrostegia venusta (Ker-Gawl.) Miers (Bignoniaceae). New Phytologist, 127, 465-471.
DOI URL |
| [41] |
Gillespie LH, Henwood MJ (1994) Temporal changes of floral nectar-sugar composition in Polyscias sambucifolia (Sieb. ex Dc.) Harms (Araliaceae). Annals of Botany, 74, 227-231.
DOI URL |
| [42] |
Golubov J, Mandujano MC, Montaña C, López-Portillo J, Eguiarte LE (2004) The demographic costs of nectar production in the desert perennial Prosopis glandulosa (Mimosoideae): A modular approach. Plant Ecology, 170, 267-275.
DOI |
| [43] | González-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signaling & Behavior, 4, 809-813. |
| [44] |
Grierson ERP, Thrimawithana AH, van Klink JW, Lewis DH, Carvajal I, Shiller J, Miller P, Deroles SC, Clearwater MJ, Davies KM, Chagné D, Schwinn KE (2024) A phosphatase gene is linked to nectar dihydroxyacetone accumulation in mānuka (Leptospermum scoparium). New Phytologist, 242, 2270-2284.
DOI URL |
| [45] |
Halpern SL, Adler LS, Wink M (2010) Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia, 163, 961-971.
DOI PMID |
| [46] |
Heil M (2011) Nectar: Generation, regulation and ecological functions. Trends in Plant Science, 16, 191-200.
DOI PMID |
| [47] |
Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM (2012) Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecology Letters, 15, 227-234.
DOI PMID |
| [48] |
Jabbour F (2017) A study of the anatomy and physiology of nectaries: A translation of Gaston Bonnier’s seminal work (1878, Bulletin de la Société Botanique de France). Botany Letters, 164, 293-302.
DOI URL |
| [49] |
Jakobsen HB, Kritjánsson K (1994) Influence of temperature and floret age on nectar secretion in Trifolium repens L. Annals of Botany, 74, 327-334.
DOI URL |
| [50] |
Kato S, Sakai S (2008) Nectar secretion strategy in three Japanese species: Changes in nectar volume and sugar concentration dependent on flower age and flowering order. Botany, 86, 337-345.
DOI URL |
| [51] |
Keasar T, Sadeh A, Shmida A (2008) Variability in nectar production and standing crop, and their relation to pollinator visits in a Mediterranean shrub. Arthropod-Plant Interactions, 2, 117-123.
DOI URL |
| [52] | Kim W, Gilet T, Bush JWM (2011) Optimal concentrations in nectar feeding. Proceedings of the National Academy of Sciences, USA, 108, 16618-16621. |
| [53] | Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303-313. |
| [54] |
Koopowitz H, Marchant T (1998) Postpollination nectar reabsorption in the African epiphyte Aerangis verdickii (Orchidaceae). American Journal of Botany, 85, 508.
PMID |
| [55] |
Koptur S, Palacios-Rios M, Díaz-Castelazo C, MacKay WP, Rico-Gray V (2013) Nectar secretion on fern fronds associated with lower levels of herbivore damage: Field experiments with a widespread epiphyte of Mexican cloud forest remnants. Annals of Botany, 111, 1277-1283.
DOI PMID |
| [56] |
Kuo J, Pate JS (1985) The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp). I. Morphology, anatomy and fine structure. Planta, 166, 15-27.
DOI PMID |
| [57] |
Lake JC, Hughes L (1999) Nectar production and floral characteristics of Tropaeolum majus L. grown in ambient and elevated carbon dioxide. Annals of Botany, 84, 535-541.
DOI URL |
| [58] |
Langenberger M, Davis A (2002) Temporal changes in floral nectar production, reabsorption, and composition associated with dichogamy in annual caraway (Carum carvi; Apiaceae). American Journal of Botany, 89, 1588-1598.
DOI PMID |
| [59] |
Leiss KA, Vrieling K, Klinkhamer PGL (2004) Heritability of nectar production in Echium vulgare. Heredity, 92, 446-451.
PMID |
| [60] |
Liao H, Fu XH, Zhao HQ, Cheng J, Zhang R, Yao X, Duan XS, Shan HY, Kong HZ (2020) The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals. Nature Communications, 11, 1777.
DOI |
| [61] |
Liao IT, Hileman LC, Roy R (2021) On the horizon for nectar-related research. American Journal of Botany, 108, 2326-2330.
DOI PMID |
| [62] |
Lun HN, Yang CF (2025) Quantitative analyses reveal interactions of community plants and insect flower visitors are associated with relative composition of nectar amino acids. Plant Ecology, 226, 451-463.
DOI |
| [63] |
Lunau K, Ren ZX, Fan XQ, Trunschke J, Pyke GH, Wang H (2020) Nectar mimicry: A new phenomenon. Scientific Reports, 10, 7039.
DOI PMID |
| [64] |
Luo EY, Ogilvie JE, Thomson JD (2014) Stimulation of flower nectar replenishment by removal: A survey of eleven animal-pollinated plant species. Journal of Pollination Ecology, 12, 52-62.
DOI URL |
| [65] |
Luyt R, Johnson SD (2002) Postpollination nectar reabsorption and its implications for fruit quality in an epiphytic orchid. Biotropica, 34, 442-446.
DOI URL |
| [66] |
Marazzi B, Bronstein JL, Koptur S (2013) The diversity, ecology and evolution of extrafloral nectaries: Current perspectives and future challenges. Annals of Botany, 111, 1243-1250.
DOI PMID |
| [67] |
Millard J, Outhwaite CL, Kinnersley R, Freeman R, Gregory RD, Adedoja O, Gavini S, Kioko E, Kuhlmann M, Ollerton J, Ren ZX, Newbold T (2021) Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 12, 2902.
DOI PMID |
| [68] |
Nachev V, Stich KP, Winter C, Bond A, Kamil A, Winter Y (2017) Cognition-mediated evolution of low-quality floral nectars. Science, 355, 75-78.
DOI PMID |
| [69] | Nachev V, Winter Y (2017) Response to Comment on “Cognition-mediated evolution of low-quality floral nectars”. Science, 358, eaao2622. |
| [70] |
Nardone E, Dey T, Kevan PG (2013) The effect of sugar solution type, sugar concentration and viscosity on the imbibition and energy intake rate of bumblebees. Journal of Insect Physiology, 59, 919-933.
DOI PMID |
| [71] | Nepi M (2017) New perspectives in nectar evolution and ecology: Simple alimentary reward or a complex multiorganism interaction? Acta Agrobotanica, 70, 1704. |
| [72] |
Nepi M, Grasso DA, Mancuso S (2018) Nectar in plant-insect mutualistic relationships: From food reward to partner manipulation. Frontiers in Plant Science, 9, 1063.
DOI PMID |
| [73] |
Nepi M, Guarnieri M, Pacini E (2001) Nectar secretion, reabsorption, and sugar composition in male and female flowers of Cucurbita pepo. International Journal of Plant Sciences, 162, 353-358.
DOI URL |
| [74] |
Nepi M, Pacini E, Willemse MTM (1996) Nectary biology of Cucurbita pepo: Ecophysiological aspects. Acta Botanica Neerlandica, 45, 41-54.
DOI URL |
| [75] |
Nepi M, Stpiczyńska M (2008a) The complexity of nectar: Secretion and resorption dynamically regulate nectar features. Naturwissenschaften, 95, 177-184.
DOI URL |
| [76] | Nepi M, Stpiczyńska M (2008b) Do plants dynamically regulate nectar features through sugar sensing? Plant Signaling & Behavior, 3, 874-876. |
| [77] |
Ng M, Yanofsky MF (2000) Three ways to learn the ABCs. Current Opinion in Plant Biology, 3, 47-52.
PMID |
| [78] |
Nicolson SW (1995) Direct demonstration of nectar reabsorption in the flowers of Grevillea robusta (Proteaceae). Functional Ecology, 9, 584-588.
DOI URL |
| [79] |
Nicolson SW (2022) Sweet solutions: Nectar chemistry and quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20210163.
DOI URL |
| [80] | Nicolson SW, Nepi M, Pacini E (2007) Nectaries and Nectar. Springer Netherlands, Dordrecht. |
| [81] | Nicolson SW, de Veer L, Köhler A, Pirk CWW (2013) Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration. Proceedings of the Royal Society B: Biological Sciences, 280, 20131597. |
| [82] |
Ollerton J (2017) Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48, 353-376.
DOI URL |
| [83] | Ollerton J, Johnson S, Hingston AB (2006) Geographical variation in diversity and specificity of pollination systems. In: Plant-Pollinator Interactions: From Specialization to Generalization (eds Ollerton J, Waser N), pp,283-308, University of Chicago Press, Chicago. |
| [84] |
Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
DOI URL |
| [85] |
Osborne J, Awmack C, Clark S, Williams I, Mills VCJA (1997) Nectar and flower production in Vicia faba L. (field bean) at ambient and elevated carbon dioxide. Apidologie, 28, 43-55.
DOI URL |
| [86] |
Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: A short review. Plant Systematics and Evolution, 238, 7-21.
DOI URL |
| [87] | Pan C, Chen Z, Zhang M, Chen X, Smagghe G, Fan M, Chang Z, Zhao L, Long J (2024) Effects of flowering period on floral traits, pollinator behavior and seed production of David’s mountain laurel (Sophora davidii). Plant Signaling & Behavior, 19, 2383823. |
| [88] |
Parachnowitsch AL, Manson JS, Sletvold N (2019) Evolutionary ecology of nectar. Annals of Botany, 123, 247-261.
DOI PMID |
| [89] |
Patiño S, Grace J (2002) The cooling of convolvulaceous flowers in a tropical environment. Plant, Cell & Environment, 25, 41-51.
DOI URL |
| [90] |
Pattrick JG, Symington HA, Federle W, Glover BJ (2020) The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging. Journal of the Royal Society Interface, 17, 20190632.
DOI URL |
| [91] |
Pedersen MW, LeFevre CW, Wiebe HH (1958) Absorption of C14-labeled sucrose by alfalfa nectaries. Science, 127, 758-759.
DOI URL |
| [92] |
Phillips BB, Shaw RF, Holland MJ, Fry EL, Bardgett RD, Bullock JM, Osborne JL (2018) Drought reduces floral resources for pollinators. Global Change Biology, 24, 3226-3235.
DOI PMID |
| [93] |
Prasifka JR, Mallinger RE, Portlas ZM, Hulke BS, Fugate KK, Paradis T, Hampton ME, Carter CJ (2018) Using nectar-related traits to enhance crop-pollinator interactions. Frontiers in Plant Science, 9, 812.
DOI PMID |
| [94] |
Pyke GH (1991) What does it cost a plant to produce floral nectar? Nature, 350, 58-59.
DOI |
| [95] |
Pyke GH (2016a) Floral nectar: Pollinator attraction or manipulation? Trends in Ecology & Evolution, 31, 339-341.
DOI URL |
| [96] |
Pyke GH (2016b) Plant-pollinator co-evolution: It’s time to reconnect with Optimal Foraging Theory and Evolutionarily Stable Strategies. Perspectives in Plant Ecology, Evolution and Systematics, 19, 70-76.
DOI URL |
| [97] |
Pyke GH, Ren ZX (2023) Floral nectar production: What cost to a plant? Biological Reviews, 98, 2078-2090.
DOI URL |
| [98] |
Pyke GH, Ren ZX, Trunschke J, Lunau K, Wang H (2020a) Changes in floral nectar are unlikely adaptive responses to pollinator flight sound. Ecology Letters, 23, 1421-1422.
DOI URL |
| [99] |
Pyke GH, Ren ZX, Trunschke J, Lunau K, Wang H (2020b) Salvage of floral resources through re-absorption before flower abscission. Scientific Reports, 10, 15960.
DOI |
| [100] |
Pyke GH, Waser NM (1981) The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica, 13, 260-270.
DOI URL |
| [101] | Pyke GH, Waser NM (2017) Comment on “Cognition-mediated evolution of low-quality floral nectars”. Science, 358, eaao1962. |
| [102] |
Quevedo-Caraballo S, de Vega C, Lievens B, Fukami T, Álvarez-Pérez S (2025) Tiny but mighty? Overview of a decade of research on nectar bacteria. New Phytologist, 245, 1897-1910.
DOI PMID |
| [103] |
Ren G, Healy RA, Klyne AM, Horner HT, James MG, Thornburg RW (2007) Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Science, 173, 277-290.
DOI URL |
| [104] |
Rivera GL, Galetto L, Bernardello L (1996) Nectar secretion pattern, removal effects, and breeding system of Ligaria cuneifolia (Loranthaceae). Canadian Journal of Botany, 74, 1996-2001.
DOI URL |
| [105] |
Roy R, Schmitt AJ, Thomas JB, Carter CJ (2017) Nectar biology: From molecules to ecosystems. Plant Science, 262, 148-164.
DOI URL |
| [106] |
Schaeffer RN, Mei Y, Andicoechea J, Manson JS, Irwin RE (2017) Consequences of a nectar yeast for pollinator preference and performance. Functional Ecology, 31, 613-621.
DOI URL |
| [107] | Shi L, Nicolson SW, Yang Y, Wu J, Yan S, Wu Z (2020) Drinking made easier: Honey bee tongues dip faster into warmer and/or less viscous artificial nectar. Journal of Experimental Biology, 223, jeb229799. |
| [108] |
Silvertown J, Gordon DM (1989) A framework for plant behavior. Annual Review of Ecology and Systematics, 20, 349-366.
DOI URL |
| [109] |
Southwick EE (1984) Photosynthate allocation to floral nectar: A neglected energy investment. Ecology, 65, 1775-1779.
DOI URL |
| [110] |
Stevenson PC, Nicolson SW, Wright GA, Manson J (2017) Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Functional Ecology, 31, 65-75.
DOI URL |
| [111] |
Stpiczyńska M (2003a) Floral longevity and nectar secretion of Platanthera chlorantha (Custer) Rchb. (Orchidaceae). Annals of Botany, 92, 191-197.
DOI URL |
| [112] |
Stpiczyńska M (2003b) Incorporation of [3H] sucrose after the resorption of nectar from the spur of Platanthera chlorantha (Custer) Rchb. Canadian Journal of Botany, 81, 927-932.
DOI URL |
| [113] | Stpiczyńska M, Milanesi C, Faleri C, Cresti M (2005) Ultrastructure of the nectary spur of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) during successive stages of nectar secretion. Acta Biologica Cracoviensia Series Botanica, 472, 111-119. |
| [114] |
Tadey M, Aizen MA (2001) Why do flowers of a hummingbird-pollinated mistletoe face down? Functional Ecology, 15, 782-790.
DOI URL |
| [115] | Tong ZY, Wu LY, Feng HH, Zhang M, Armbruster WS, Renner SS, Huang SQ (2023) New calculations indicate that 90% of flowering plant species are animal-pollinated. National Science Review, 10, nwad219. |
| [116] | Torres C, Galetto L (1998) Patterns and implications of floral nectar secretion, chemical composition, removal effects and standing crop in Mandevilla pentlandiana (Apocynaceae). Botanical Journal of the Linnean Society, 127, 207-223. |
| [117] |
Vannette RL (2020) The floral microbiome: Plant, pollinator, and microbial perspectives. Annual Review of Ecology, Evolution, and Systematics, 51, 363-386.
DOI |
| [118] |
Vannette RL, Fukami T (2016) Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology, 97, 1410-1419.
PMID |
| [119] | VanValkenburg E, Gonçalves-Souza T, Sanders NJ, CaraDonna P (2024) Sodium-enriched nectar shapes plant-pollinator interactions in a subalpine meadow. Ecology and Evolution, 14, e70026. |
| [120] |
Vassilyev AE (2010) On the mechanisms of nectar secretion: Revisited. Annals of Botany, 105, 349-354.
DOI PMID |
| [121] |
Veiga-Blanco T, Galetto L, Machado IC (2013) Nectar regulation in Euphorbia tithymaloides L., a hummingbird- pollinated Euphorbiaceae. Plant Biology, 15, 910-918.
DOI PMID |
| [122] |
Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban K, Seltzer R, Ben-Dor U, Estlein P, Kabat A, Peretz D, Ratzersdorfer I, Krylov S, Chamovitz D, Sapir Y, Yovel Y, Hadany L (2019) Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecology Letters, 22, 1483-1492.
DOI PMID |
| [123] |
Villarreal AG, Freeman CE (1990) Effects of temperature and water stress on some floral nectar characteristics in Ipomopsis longiflora (Polemoniaceae) under controlled conditions. Botanical Gazette, 151, 5-9.
DOI URL |
| [124] |
Wei J, Huo Z, Gorb SN, Rico-Guevara A, Wu Z, Wu J (2020) Sucking or lapping: Facultative feeding mechanisms in honeybees (Apis mellifera). Biology Letters, 16, 20200449.
DOI URL |
| [125] | Wen SJ, Chen S, Rech AR, Ji L, Wang H, Wang ZY, Wu D, Ren ZX (2024) The functional dilemma of nectar mimic staminodes in Parnassia wightiana (Celastraceae): Attracting pollinators and florivorous beetles. Ecology and Evolution, 14, e70380. |
| [126] |
Wen SJ, Deng MX, Wu D, Wang ZY, Ren ZX (2024) Comparative floral nectar attributes in four Swertia species (Gentianaceae). Biodiversity Science, 32, 23297. (in Chinese with English abstract)
DOI URL |
|
[文诗嘉, 邓敏学, 吴丁, 王志勇, 任宗昕 (2024) 獐牙菜属四种植物花蜜特征的比较. 生物多样性, 32, 23297.]
DOI |
|
| [127] |
Wenzler M, Hölscher D, Oerther T, Schneider B (2008) Nectar formation and floral nectary anatomy of Anigozanthos flavidus: A combined magnetic resonance imaging and spectroscopy study. Journal of Experimental Botany, 59, 3425-3434.
DOI URL |
| [128] | Willmer P (2011) Pollination and Floral Ecology. Princeton University Press. Princeton. |
| [129] |
Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Annals of Botany, 97, 177-193.
DOI URL |
| [130] |
Witt T, Jürgens A, Geyer R, Gottsberger G (1999) Nectar dynamics and sugar composition in flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biology, 1, 334-345.
DOI URL |
| [131] |
Zhang HP, Wen SJ, Wang H, Ren ZX (2023) Floral nectar reabsorption and a sugar concentration gradient in two long-spurred Habenaria species (Orchidaceae). BMC Plant Biology, 23, 331.
DOI |
| [132] | Zhao XN (2018) The Study of Reproductive Ecology on Nectar Presenting Strategies in Four Nectariferous Plants. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract) |
| [赵兴楠 (2018) 花蜜呈现策略的繁殖生态学研究. 博士学位论文, 东北师范大学, 长春.] |
| [1] | 刘志祥, 谢华, 张慧, 黄晓磊. 表皮碳氢化合物在社会性昆虫中的功能多样性及其调控[J]. 生物多样性, 2025, 33(2): 24302-. |
| [2] | 陈楠, 张全国. 实验进化研究途径[J]. 生物多样性, 2024, 32(9): 24171-. |
| [3] | 李巧峡, 李有龙, 李纪纲, 陈晨龙, 孙坤. 光周期调控维西堇菜与裂叶堇菜开放花和闭锁花的发育[J]. 生物多样性, 2024, 32(6): 23484-. |
| [4] | 申小虎, 李冠宇, 史洪飞, 王传之. 数据不平衡下鸟声识别的集成学习策略[J]. 生物多样性, 2024, 32(10): 24215-. |
| [5] | 吕晓琴, 李杨, 王顺雨, 姚仁秀, 王晓月. 中甸乌头总状花序不同位置花粉和花蜜的化学性状没有显著差异[J]. 生物多样性, 2024, 32(1): 23371-. |
| [6] | 文诗嘉, 邓敏学, 吴丁, 王志勇, 任宗昕. 獐牙菜属四种植物花蜜特征的比较[J]. 生物多样性, 2024, 32(1): 23297-. |
| [7] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
| [8] | 张慧, 刘倩, 黄晓磊. 社会性昆虫级型和行为分化机制研究进展[J]. 生物多样性, 2021, 29(4): 507-516. |
| [9] | 柯锦秀, 陈多, 郭延平. 植物叶缘形态的发育调控机理[J]. 生物多样性, 2018, 26(9): 988-997. |
| [10] | 国春策, 张睿, 山红艳, 孔宏智. 调控进化与形态多样性[J]. 生物多样性, 2014, 22(1): 72-79. |
| [11] | 孙杉, 张志强, 张勃, 杨永平. 从合作的进化探讨植物与传粉者的相互作用[J]. 生物多样性, 2012, 20(3): 250-263. |
| [12] | 陈高, 张蕊蕊, 董坤, 公维昌, 马永鹏. 常春油麻藤有气味花蜜及其生态功能[J]. 生物多样性, 2012, 20(3): 360-367. |
| [13] | 马海萍, 赵大贺, 廖万金. 草乌花蜜产量的梯度分布及熊蜂自下而上的访花行为[J]. 生物多样性, 2012, 20(3): 405-408. |
| [14] | 周大庆, 周春发, 邓文洪. 潜在洞巢资源差异对次级洞巢鸟及繁殖鸟类群落的影响[J]. 生物多样性, 2009, 17(5): 448-457. |
| [15] | 廖万金, 王峥媚, 谢丽娜, 肖雯, 孙岳. 草乌传粉过程中的广告效应与回报物质研究[J]. 生物多样性, 2007, 15(6): 618-625. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn