生物多样性 ›› 2016, Vol. 24 ›› Issue (7): 847-854. DOI: 10.17520/biods.2015320 cstr: 32101.14.biods.2015320
所属专题: 全球气候变化下的海洋生物多样性专辑
王雨1, 张会勇2, 项鹏1, 叶又茵1, 林更铭1, 杨清良1, 林茂1,,A;*()
收稿日期:
2015-11-16
接受日期:
2016-04-15
出版日期:
2016-07-20
发布日期:
2016-08-04
通讯作者:
林茂
基金资助:
Yu Wang1, Huiyong Zhang2, Peng Xiang1, Youyin Ye1, Gengming Lin1, Qingliang Yang1, Mao Lin1,*()
Received:
2015-11-16
Accepted:
2016-04-15
Online:
2016-07-20
Published:
2016-08-04
Contact:
Lin Mao
摘要:
颗石藻(coccolithophore)作为一种模式生物, 在重建古海洋气候和环境以及预测未来全球气候变化中起着很重要的作用, 赫氏艾密里藻(Emiliania huxleyi)是颗石藻最为典型的代表种。钙质颗石粒(coccolith)是颗石藻形态分类的主要依据, 有着非常精细和复杂的结构, 在样品收集过程中很容易遭到破坏, 这是颗石藻鉴定中经常遇到的一个技术问题。国际上还没有统一的颗石藻定量采样和样品分析方法。本文采用原子力显微方法(atomic force microscopy, AFM)对赫氏艾密里藻的颗石粒形态进行了超显微观察研究, 获取不同扫描范围的高度图(height image)和形貌图(deflection image)以观测其形态结构, 并建立了针对颗石藻的原子力显微样品制备方法。通过离心与膜过滤两种方法收集赫氏艾密里藻, 比较后得出了一种简单、快速的适合于观测颗石藻在大气环境成像的样品处理、制备和图像采集方法: 3,000-4,000 rpm, 20℃离心5 min, 收集颗石藻, 去除有机杂质后取白色沉淀, 将沉淀物悬浮于0.05 M NH4HCO3溶液中, 悬浮液滴加于盖玻片表面, 20℃晾干后于样品台在AFM接触模式(contact mode)下原子级扫描, 扫描范围50 µm, 频率1 Hz, 可以得到优质的颗石粒形态图像, 有助于颗石藻的分类鉴别。该方法可用于室内不同环境梯度或参数下的颗石粒形态结构及颗石藻藻华的检测与研究。
王雨, 张会勇, 项鹏, 叶又茵, 林更铭, 杨清良, 林茂 (2016) 颗石藻颗石粒形态的原子力显微观测方法: 以赫氏艾密里藻为例. 生物多样性, 24, 847-854. DOI: 10.17520/biods.2015320.
Yu Wang, Huiyong Zhang, Peng Xiang, Youyin Ye, Gengming Lin, Qingliang Yang, Mao Lin (2016) Observing the morphological features of Emiliania huxleyi coccoliths using atomic force microscopy. Biodiversity Science, 24, 847-854. DOI: 10.17520/biods.2015320.
图1 藻液过滤制样条件下赫氏艾密里藻颗石粒的原子力20 µm×20 µm扫描范围高度图(a)和形貌图(b)
Fig. 1 Height (a) and deflection (b) images at 20 µm×20 µm in AFM of Emiliania huxleyi coccoliths collected by filteration
图2 藻液过滤制样条件下赫氏艾密里藻颗石粒的原子力20 µm×20 µm(a)与5×5 µm2(b)扫描范围形貌图
Fig. 2 Deflection images at 20 µm×20 µm (a) and 5 µm×5 µm (b) in AFM of Emiliania huxleyi coccoliths collected by filteration
图3 离心收集条件下赫氏艾密里藻颗石粒的原子力100 µm×100 µm扫描范围高度图(a)与形貌图(b)
Fig. 3 Height (a) and deflection (b) images at 100 µm×100 µm in AFM of Emiliania huxleyi coccoliths collected by centrifugation
图4 离心收集条件下赫氏艾密里藻颗石粒的原子力20 µm×20 µm(a)与5 µm×5 µm(b)扫描范围形貌图
Fig. 4 Deflection image at 20×20 µm2 (a), 5 µm×5 µm2 (b) in AFM of Emiliania huxleyi coccoliths collected by centrifugation
图5 离心收集条件下赫氏艾密里藻颗石粒的原子力2 µm×2 µm扫描范围正面(a)与反面(b)形貌图
Fig. 5 Frontal (a) and inverse (b) deflection image at 2 µm×2 µm in AFM of Emiliania huxleyi coccoliths collected by centrifugation
图6 离心收集条件下赫氏艾密里藻颗石粒(正面) 的原子力1 µm×1 µm扫描范围高度图(a)与形貌图(b)
Fig. 6 Frontal height (a) and deflection (b) image at 1 µm×1 µm in AFM of Emiliania huxleyi coccoliths collected by centrifugation
图7 离心收集条件下赫氏艾密里藻颗石粒(正面)的原子力500 nm×500 nm扫描范围高度图(a)与形貌图(b)
Fig. 7 Frontal height (a) and deflection (b) image at 500 nm×500 nm in AFM of Emiliania huxleyi coccoliths collected by centrifugation
[1] | Brown CW, Yoder JA (1994) Coccolithophorid blooms in the global ocean. Journal of Geophysics Research, 99, 7467-7482. |
[2] | Brownlee C, Taylor A (2004) Calcification in coccolitho- phores: a cellular perspective. In: Coccolithophore: From Molecular Process to Global Impacts (eds Theirstein HR, Young JR), pp. 31-50. Springer-Verlag Press, Berlin |
[3] | Chen YLL, Chen HY, Chung CW (2007) Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep Sea Research Part II Topical Studies in Oceanography, 54, 1617-1633. |
[4] | Cros L, Fortuño JM (2002) Atlas of northwestern Mediter- ranean coccolithophores. Scientia Marina, 66, 7-182. |
[5] | Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. Journal of Bacteriology, 184, 5205-5213. |
[6] | Fabry VJ (1989) Aragonite production by pteropod molluscs in the subarctic Pacific. Deep Sea Research Part A Oceanographic Research Papers, 36, 1735-1751. |
[7] | Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals (eds Smith WL, Chanley MH), pp. 26-60. Plenum Press, New York. |
[8] | Henriksen K, Stipp SLS, Young JR, Bown PR (2003) Tailoring calcite: Nanoscale AFM of coccolith biocrystals. American Mineralogist, 88, 2040-2044. |
[9] | Henriksen K, Stipp SLS, Young JR, Marsh ME (2004a) Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. American Mineralogist, 89, 1709-1716. |
[10] | Henriksen K, Young JR, Bown PR, Stipp SLS (2004b) Coccolith biomineralisation studied with atomic force microscopy. Palaeontology, 47, 725-743. |
[11] | Iglesias-Rodríguez MD, Brown CW, Doney SC, Joan K, Dorota K, Kolber Z, Hayes PK, Falkowski P (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochemical Cycles, 16, 47-1-47-20. |
[12] | Jin HL, Feng YY, Li XQ, Zhai WD, Sun J (2015) Spring and autumn living coccolithophores in the Bohai Sea and Yellow Sea, China. Acta Oceanologica Sinica, 34, 132-146. |
[13] | Jordan RW, Kleijne A (1994) A classification system for living coccolithophores. In: Coccolithophores (eds Winter A, Siesser WG), pp. 83-106. Cambridge University Press, Cambridge. |
[14] | Kasas S, Ikai A (1995) A method for anchoring round shaped cells for atomic force microscope imaging. Biophysical Journal, 68, 1678-1680. |
[15] | Li Y, Gao YH, Huang DQ (2002) Advances in study of marine coccolithophorids. Marine Sciences, 26, 13-16. (in Chinese with English abstract) |
[李杨, 高亚辉, 黄德强 (2002) 海洋球石藻研究进展. 海洋科学, 26(3), 13-16.] | |
[16] | Liu HJ, Sun J, Feng YY (2015) Study on modern cocco- lithophores in coastal region along the east Hainan Island. Acta Oceanologica Sinica, 37(12), 27-40. (in Chinese with English abstract) |
[刘海娇, 孙军, 冯媛媛 (2015) 琼东海域今生颗石藻群落研究. 海洋学报, 37(12), 27-40.] | |
[17] | Méndez-Vilas A, Gallardo-Moreno AM, González-Martín LM (2007) Atomic force microscopy of mechanically trapped bacterial cells. Microscopy and Microanalysis, 13, 55-64. |
[18] | Paasche E (2001) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation and calcification-photosynthesis interaction. Phycologia, 40, 503-529. |
[19] | Quintero-Torres R, Aragon JL, Torres M, Estrada M, Cros L (2006) Strong far-field coherent scattering of ultraviolet radiation by holococcolithophores. Physical Review E, 74, 032901. |
[20] | Riebesell U, Zondervan I, Rost BM Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364-367. |
[21] | Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Coccolithophores: From Molecular Processes to Global Impact (eds Theirstein R, Young R), pp. 99-125. Springer-Verlag Press, Berlin. |
[22] | Sun J (2007) Organic carbon pump and carbonate counter pump of living coccolithophorid. Advances in Earth Science, 22, 1231-1239. (in Chinese with English abstract) |
[孙军 (2007) 今生颗石藻的有机碳泵和碳酸盐反向泵. 地球科学进展, 22, 1231-1239.] | |
[23] | Sun J, An BZ, Dai MH, Li TG (2011) Living coccolithophores in the western South China Sea in summer 2007. Oceanologia et Limnologia Sinica, 42, 170-178. (in Chinese with English abstract) |
[孙军, 安佰正, 戴民汉, 李铁刚 (2011) 夏季南海西部今生颗石藻. 海洋与湖沼, 42, 170-178.] | |
[24] | Sun J, Jing SF (2011) Species diversity of living coccolithophores in Chinese sea waters. Biodiversity Science, 19, 787-797. (in Chinese with English abstract) |
[孙军, 荆少非 (2011) 中国近海今生颗石藻物种多样性初步研究. 生物多样性 19, 787-797.] | |
[25] | Sun J, Gu XX, Feng YY, Jing SF, Jiang WS, Jin HY, Chen JF (2014) Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 11, 779-806. |
[26] | Sun J, Liu DY, Qian SB (2002) A quantative research and analysis method for marine phytoplankton: an introduction to Utermöhl method and its modification. Journal of Oceanography of Huanghai & Bohai Seas, 20, 105-112. (in Chinese with English abstract) |
[孙军, 刘东艳, 钱数本 (2002) 一种海洋浮游植物定量研究分析方法—Utermöhl方法的介绍及其改进. 黄渤海海洋, 20, 105-112.] | |
[27] | Thierstern HR, Young JR (2004) Coccolithophores: From Molecular Processes to Global Impact. Springer-Verlag Press, Berlin. |
[28] | Touhami A, Jericho MH, Beveridge TJ (2004) Atomic force microscopy of cell growth and division in Staphylococcus aureus. Journal of Bacteriology, 186, 3286-3295. |
[29] | Tyrrell T, Merico A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In: Coccolithophores: From Molecular Processes to Global Impact (eds Theirstein R, Young R), pp. 75-97. Springer-Verlag Press, Berlin. |
[30] | Vadillorodríguez V, Busscher HJ, Norde W, de VJ, Dijkstra RJ, Stokroos I, Van der Mei HC (2004) Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Applied and Environmental Microbiology, 70, 5541-5546. |
[31] | Wagner P (1998) Immobilization strategies for biological scanning probe microscopy. FEBS Letters, 430, 112-115. |
[32] | Wang J, Zuo Y, Chen RS (2008) Species composition of coccolithophorides in the Yellow Sea. Marine Fisheries Research, 29, 137-138. (in Chinese with English abstract) |
[王俊, 左涛, 陈瑞盛 (2008) 黄海球石藻的种类组成. 海洋水产研究, 29, 137-138.] | |
[33] | Westbroek P, Young JR, Linschooten K (1989) Coccolith production (biomineralisation) in the marine alga Emiliania huxleyi. Journal of Protozoology, 36, 368-373. |
[34] | Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. In: Coccolithophores (eds Winter A, Siesser WG), pp. 161-177. Cambridge University Press, UK. |
[35] | Yang TN, Wei KY, Chen LL (2003) Occurrence of coccolithophorids in the northeastern and central South China Sea. Taiwania, 48, 29-45. |
[36] | Yang TN, Wei KY, Gong GC (2001) Distribution of coccolithophorids and coccoliths in surface ocean off northeastern Taiwan. Botanical Bulletin of Academic Sinica, 42, 287-302. |
[37] | Young JR (1994) Functions of coccoliths. In: Coccolithophores (eds Winter A, Siesser WG), pp. 63-82. Cambridge University Press, Cambridge. |
[1] | 陈静, 张丙昌, 刘燕晋, 武杰, 赵康, 明姣. 荒漠生物结皮细鞘丝藻类(Leptolyngbya-like)蓝藻多样性[J]. 生物多样性, 2024, 32(9): 24186-. |
[2] | 王江, 赵一凡, 屈彦福, 张财文, 张亮, 陈传武, 王彦平. 中国蛇类形态、生活史和生态学特征数据集[J]. 生物多样性, 2023, 31(7): 23126-. |
[3] | 钟雨茜, 陈传武, 王彦平. 中国蜥蜴类生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(4): 22071-. |
[4] | 丁晨晨, 梁冬妮, 信文培, 李春旺, 蒋志刚. 中国哺乳动物形态、生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(2): 21520-. |
[5] | 王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平. 中国鸟类的生活史和生态学特征数据集[J]. 生物多样性, 2021, 29(9): 1149-1153. |
[6] | 俞正森, 宋娜, 本村浩之, 高天翔. 中国银口天竺鲷属鱼类的分类厘定[J]. 生物多样性, 2021, 29(7): 971-979. |
[7] | 郑硕理, 田晓玲, 黄承玲, 王灵军, 冯元, 张敬丽. 结合分子手段和形态分析验证大白杜鹃与马缨杜鹃的自然杂交[J]. 生物多样性, 2017, 25(6): 627-637. |
[8] | 孙华之, 谭敦炎, 曲荣明. 短命植物小疮菊异形瘦果特性及其对荒漠环境的适应[J]. 生物多样性, 2008, 16(4): 353-361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn