生物多样性 ›› 2021, Vol. 29 ›› Issue (10): 1321-1335. DOI: 10.17520/biods.2021081
都业勤1, 张迪1, 王赛1, 王磊1, 闫兴富2,*(), 唐占辉1,*()
收稿日期:
2021-03-07
接受日期:
2021-06-25
出版日期:
2021-10-20
发布日期:
2021-10-20
通讯作者:
闫兴富,唐占辉
作者简介:
tangzh789@nenu.edu.cn基金资助:
Yeqin Du1, Di Zhang1, Sai Wang1, Lei Wang1, Xingfu Yan2,*(), Zhanhui Tang1,*()
Received:
2021-03-07
Accepted:
2021-06-25
Online:
2021-10-20
Published:
2021-10-20
Contact:
Xingfu Yan,Zhanhui Tang
摘要:
开花植物性系统特征是植物在长期适应进化过程中逐渐形成的繁殖策略, 它在一定程度上影响了物种的种群结构及其在生境中的分布格局, 因此性系统特征一直是植物进化与生态学领域的研究热点。本研究于2012年和2020年在吉林省金川泥炭沼泽湿地, 通过样地调查取样的方法, 研究了湿地植物大花百合(Lilium concolor var. megalanthum)的性系统特征以及不同性别表型植株的比例、密度及空间分布格局, 并探究了大花百合植株个体大小和其性别表达的联系, 比较了不同性别表型的花粉实际可育性和来源不同的花粉授粉处理结实后的种子活力。结果显示, 个体水平上, 大花百合具有雄花植株、两性花植株和雄花两性花同株(即雄全同株) 3种性表型; 种群水平上, 具有雄花的个体充当父本, 通过花粉向下一代传递基因, 而具有两性花的个体主要充当母本, 通过胚珠实现基因的传递。2020年大花百合雄花植株占种群内开花植株的39.14%, 相比2012年雄花植株比例增加了22.80%; 大花百合种群分布密度为0.06株/m2, 较2012年下降了0.09株/m2。从2012年到2020年, 总体表现为种群密度降低, 雄花植株相对比例增加的趋势。两性花植株和雄花植株在小尺度范围主要呈聚集分布, 随着尺度增大, 趋于随机分布。雄花植株显著小于两性花植株, 但鳞茎资源分配显著高于两性花植株。大花百合植株的性表达遵循大小依赖的性分配假说: 个体较小的植株表达为雄花植株, 而个体较大的植株则为两性花植株或雄全同株。在不同授粉处理下的结籽率和种子萌发结果表明, 大花百合自花授粉结籽率和坐果率显著低于异花授粉, 雄花植株和两性花植株花粉可育性以及对两性花植株授粉后所获得种子活力无显著差异。大花百合雄花植株的出现可能是对有限环境资源条件适应的结果, 反映了湿地条件下该植物在生长和繁殖资源之间的权衡策略, 在长期的湿地演变过程中, 这种性系统特征的出现具有一定的适应性意义。
都业勤, 张迪, 王赛, 王磊, 闫兴富, 唐占辉 (2021) 湿地植物大花百合种群的性系统特征. 生物多样性, 29, 1321-1335. DOI: 10.17520/biods.2021081.
Yeqin Du, Di Zhang, Sai Wang, Lei Wang, Xingfu Yan, Zhanhui Tang (2021) Sexual system characteristics of Lilium concolor var. megalanthum in peatland. Biodiversity Science, 29, 1321-1335. DOI: 10.17520/biods.2021081.
图1 大花百合植株形态特征。A: 未开花; B: 开花; C: 全株; D: 果实和种子; E: 鳞茎。
Fig. 1 Morphological characteristics of Lilium concolor var. megalanthum. A, No-flowering plant; B, Flowering plant; C, The whole plant; D, Fruits and seeds; E, Bulb.
图2 大花百合自然种群中两种不同表型的花形态特征。A:两性花; B: 雄花; C?E: 退化的雌蕊; F: 正常雌蕊。
Fig. 2 Flower morphological characteristics of two different phenotypes in natural population of Lilium concolor var. megalanthum. A, Hermaphroditic flower; B, Male flower; C?E, Rudimentary pistil during flowering; F, Normally well-developed pistil.
年份 Year | 植株比例 Percentage of plant (%) | 密度 Density (plants/m2) | |||||
---|---|---|---|---|---|---|---|
两性花植株 Hermaphrodite | 雄花植株 Male | 总计 Total | 两性花植株 Hermaphrodite | 雄花植株 Male | 总计 Total | ||
2012 (N = 1,530) | 83.66 ± 0.53a | 16.34 ± 0.53a | 100 | 0.13 ± 0.04a | 0.02 ± 0.01a | 0.15 ± 0.05a | |
2020 (N = 666) | 60.86 ± 3.51b | 39.14 ± 3.51b | 100 | 0.04 ± 0.01a | 0.02 ± 0.00a | 0.06 ± 0.01a |
表1 大花百合两种性别表型植株比例和分布密度的年际变化(平均值 ± 标准误)
Table 1 Interannual variation of percentage and distribution density of two sexual phenotypes of Lilium concolor var. megalanthum (Mean ± SE)
年份 Year | 植株比例 Percentage of plant (%) | 密度 Density (plants/m2) | |||||
---|---|---|---|---|---|---|---|
两性花植株 Hermaphrodite | 雄花植株 Male | 总计 Total | 两性花植株 Hermaphrodite | 雄花植株 Male | 总计 Total | ||
2012 (N = 1,530) | 83.66 ± 0.53a | 16.34 ± 0.53a | 100 | 0.13 ± 0.04a | 0.02 ± 0.01a | 0.15 ± 0.05a | |
2020 (N = 666) | 60.86 ± 3.51b | 39.14 ± 3.51b | 100 | 0.04 ± 0.01a | 0.02 ± 0.00a | 0.06 ± 0.01a |
图3 大花百合种群的表型性别分布。A?C: 2012年调查的3个种群; D?F: 2020年调查的3个种群。
Fig. 3 The distribution of phenotypic gender in the populations of Lilium concolor var. megalanthum. A?C, The three populations surveyed in 2012; D?F, The three populations surveyed in 2020.
图4 2020年大花百合不同性别表型植株在样地中的空间分布。A:样地1; B: 样地2; C: 样地3。
Fig. 4 Spatial distribution of individuals of different sexual phenotypes of Lilium concolor var. megalanthum in sample plots in 2020. A, Plot 1; B, Plot 2; C, Plot 3.
图5 2020年大花百合两种性别表型植株的空间分布格局。A:样地1; B: 样地2; C: 样地3。
Fig. 5 Spatial distribution pattern of two sexual phenotypes of Lilium concolor var. megalanthum in 2020. A, Plot 1; B, Plot 2; C, Plot 3.
指标 Parameters | 两性花植株 Hermaphrodite (N = 30) | 雄花植株 Male (N = 30) |
---|---|---|
株高 Plant height (cm) | 49.35 ± 1.15a | 44.45 ± 0.88b |
叶片数 Leaf number | 17.17 ± 0.44a | 12.77 ± 0.44b |
叶长 Leaf length (cm) | 6.70 ± 0.17a | 6.53 ± 0.12a |
叶宽 Leaf width (cm) | 0.73 ± 0.03a | 0.70 ± 0.02a |
基径 Base diameter (cm) | 0.23 ± 0.01a | 0.19 ± 0.01b |
花直径 Flower diameter (cm) | 5.64 ± 0.18a | 4.65 ± 0.15b |
花瓣长 Corolla length (cm) | 4.23 ± 0.10a | 3.52 ± 0.07b |
花瓣宽 Corolla width (cm) | 1.51 ± 0.04a | 1.18 ± 0.03b |
雄蕊长 Stamen length (cm) | 2.68 ± 0.04a | 2.47 ± 0.05b |
表2 大花百合两种性别表型植株的形态特征比较(平均值 ± 标准误)
Table 2 Comparison of morphological characteristics between two sexual phenotypes of Lilium concolor var. megalanthum (Mean ± SE).
指标 Parameters | 两性花植株 Hermaphrodite (N = 30) | 雄花植株 Male (N = 30) |
---|---|---|
株高 Plant height (cm) | 49.35 ± 1.15a | 44.45 ± 0.88b |
叶片数 Leaf number | 17.17 ± 0.44a | 12.77 ± 0.44b |
叶长 Leaf length (cm) | 6.70 ± 0.17a | 6.53 ± 0.12a |
叶宽 Leaf width (cm) | 0.73 ± 0.03a | 0.70 ± 0.02a |
基径 Base diameter (cm) | 0.23 ± 0.01a | 0.19 ± 0.01b |
花直径 Flower diameter (cm) | 5.64 ± 0.18a | 4.65 ± 0.15b |
花瓣长 Corolla length (cm) | 4.23 ± 0.10a | 3.52 ± 0.07b |
花瓣宽 Corolla width (cm) | 1.51 ± 0.04a | 1.18 ± 0.03b |
雄蕊长 Stamen length (cm) | 2.68 ± 0.04a | 2.47 ± 0.05b |
图6 大花百合两种性别表型植株各部分生物量干重。*** P < 0.001, 不同大写字母表示两性花植株和雄花植株对应的地上生物量、地下生物量和总生物量差异显著(P < 0.05) 。
Fig. 6 Dry weight of biomass of two sexual phenotypes of Lilium concolor var. megalanthum. *** P < 0.001. Different capital letters indicate significant differences in aboveground biomass, underground biomass, total biomass between hermaphrodite and male plant (P < 0.05).
图7 大花百合两种性别表型植株生物量分配。** P < 0.01, 不同大写字母表示两性花植株和雄花植株对应的地上生物量分配和地下生物量分配有显著性差异(P < 0.05)。
Fig. 7 Biomass allocation of two sexual phenotypes of Lilium concolor var. megalanthum. ** P < 0.01. Different capital letters indicate significant differences in aboveground biomass allocation, underground biomass allocation between hermaphrodite and male plant (P < 0.05).
图8 大花百合两种性别表型植株花分配与总生物量的回归关系
Fig. 8 Regression relationships between flower biomass allocation and total biomass of two sexual phenotypes of Lilium concolor var. megalanthum
图9 大花百合两种性别表型植株表型特征排序分类。PH: 株高; LN: 叶片数; LL: 叶长; LW: 叶宽; BD: 基径; FD: 花直径; CL: 花瓣长; CW: 花瓣宽; SL: 雄蕊长; SDW: 茎干重; LDW: 叶干重; FDW: 花干重; BDW: 鳞茎干重; RDW: 地下茎干重; FRDW: 须根干重; AB: 地上生物量; UB: 地下生物量; TB: 总生物量。
Fig. 9 Ordination and classification of phenotypic characteristics of two sexual phenotypes of Lilium concolor var. megalanthum. PH, Plant height; LN, Leaf number; LL, Leaf length; LW, Leaf width; BD, Base diameter; FD, Flower diameter; CL, Corolla length; CW, Corolla width; SL, Stamen length; SDW, Stem dry weight; LDW, Leaf dry weight; FDW, Flower dry weight; BDW, Bulb dry weight; RDW, Rhizome dry weight; FRDW, Fibrous root dry weight; AB, Aboveground biomass; UB, Underground biomass; TB, Total biomass.
授粉处理 Pollination treatments | 种子数量 No. of seeds | 种子千粒重 Thousand-seed weight (g) | 结籽率 Seed set (%) | 坐果率 Fruit set (%) | 果荚长 Capsule length (cm) | 果荚宽 Capsule width (cm) |
---|---|---|---|---|---|---|
自花授粉 Self-pollination (N = 15) | 221 ± 33a | 1.73 ± 0.43a | 8.04 ± 3.22b | 53.33b | 2.26 ± 0.25a | 1.32 ± 0.09a |
自然状态授粉 Natural pollination (N = 16) | 235 ± 11a | 1.94 ± 0.15a | 46.45 ± 4.95a | 100a | 2.27 ± 0.11a | 1.37 ± 0.04a |
异花授两性花粉 Hermaphrodite-hermapheodite pollination (N = 13) | 264 ± 66a | 1.39 ± 0.17a | 52.03 ± 6.10a | 92.31a | 2.04 ± 0.16a | 1.34 ± 0.07a |
异花授雄性花粉 Male-hermapheodite pollination (N = 12) | 195 ± 18a | 1.66 ± 0.12a | 43.06 ± 6.40a | 100a | 1.86 ± 0.13a | 1.25 ± 0.04a |
表3 不同授粉处理条件下大花百合结实比较(平均值 ± 标准误)
Table 3 Comparison of fruit set of Lilium concolor var. megalanthum with different pollination treatments (Mean ± SE)
授粉处理 Pollination treatments | 种子数量 No. of seeds | 种子千粒重 Thousand-seed weight (g) | 结籽率 Seed set (%) | 坐果率 Fruit set (%) | 果荚长 Capsule length (cm) | 果荚宽 Capsule width (cm) |
---|---|---|---|---|---|---|
自花授粉 Self-pollination (N = 15) | 221 ± 33a | 1.73 ± 0.43a | 8.04 ± 3.22b | 53.33b | 2.26 ± 0.25a | 1.32 ± 0.09a |
自然状态授粉 Natural pollination (N = 16) | 235 ± 11a | 1.94 ± 0.15a | 46.45 ± 4.95a | 100a | 2.27 ± 0.11a | 1.37 ± 0.04a |
异花授两性花粉 Hermaphrodite-hermapheodite pollination (N = 13) | 264 ± 66a | 1.39 ± 0.17a | 52.03 ± 6.10a | 92.31a | 2.04 ± 0.16a | 1.34 ± 0.07a |
异花授雄性花粉 Male-hermapheodite pollination (N = 12) | 195 ± 18a | 1.66 ± 0.12a | 43.06 ± 6.40a | 100a | 1.86 ± 0.13a | 1.25 ± 0.04a |
授粉处理 Pollination treatments | 萌发率 Germination rate (%) | 初始萌发时间 Initial germination time (d) | 萌发势 Germination potential (%) | 萌发指数 Germination index |
---|---|---|---|---|
自花授粉 Self-pollination (N = 15) | 95.84 ± 3.15a | 7.75 ± 0.25a | 24.17 ± 3.15a | 2.79 ± 0.15a |
自然状态授粉 Natural pollination (N = 16) | 95.83 ± 2.50a | 9.00 ± 0.58a | 25.83 ± 2.85a | 2.34 ± 0.07a |
异花授两性花粉 Hermaphrodite-hermapheodite pollination (N = 13) | 99.17 ± 0.83a | 8.75 ± 0.48a | 36.67 ± 7.20a | 2.61 ± 0.27a |
异花授雄性花粉 Male-hermapheodite pollination (N = 12) | 89.17 ± 5.67a | 9.00 ± 0.41a | 28.34 ± 6.74a | 2.21 ± 0.24a |
表4 不同授粉处理条件下所得大花百合种子的萌发特征(平均值 ± 标准误)
Table 4 Seed germination characteristics of Lilium concolor var. megalanthum with different pollination treatments (Mean ± SE)
授粉处理 Pollination treatments | 萌发率 Germination rate (%) | 初始萌发时间 Initial germination time (d) | 萌发势 Germination potential (%) | 萌发指数 Germination index |
---|---|---|---|---|
自花授粉 Self-pollination (N = 15) | 95.84 ± 3.15a | 7.75 ± 0.25a | 24.17 ± 3.15a | 2.79 ± 0.15a |
自然状态授粉 Natural pollination (N = 16) | 95.83 ± 2.50a | 9.00 ± 0.58a | 25.83 ± 2.85a | 2.34 ± 0.07a |
异花授两性花粉 Hermaphrodite-hermapheodite pollination (N = 13) | 99.17 ± 0.83a | 8.75 ± 0.48a | 36.67 ± 7.20a | 2.61 ± 0.27a |
异花授雄性花粉 Male-hermapheodite pollination (N = 12) | 89.17 ± 5.67a | 9.00 ± 0.41a | 28.34 ± 6.74a | 2.21 ± 0.24a |
[1] |
Abdusalam A, Tan DY, Tahan O (2012) Effects of vegetative growth, plant size and flowering order on sexual reproduction allocation of Tulipa sinkiangensis. Biodiversity Science, 20, 391-399. (in Chinese with English abstract)
DOI URL |
[ 艾沙江·阿不都沙拉木, 谭敦炎, 吾买尔夏提·塔汉 (2012) 新疆郁金香营养生长、个体大小和开花次序对繁殖分配的影响. 生物多样性, 20, 391-399.]
DOI |
|
[2] |
Ainsworth C (2000) Boys and girls come out to play: The molecular biology of dioecious plants. Annals of Botany, 86, 211-221.
DOI URL |
[3] | Ashman TL (2006) The evolution of separate sexes:A focus on the ecological context. In: Ecologyand Evolution of Flowers eds Harder LD, BarrettSCH, pp.204-222. Oxford University Press, New York. |
[4] |
Astuti G, Pratesi S, Carta A, Peruzzi L (2020) Male flowers in Tulipa pumila Moench (Liliaceae) potentially originate from gender diphasy. Plant Species Biology, 35, 130-137.
DOI URL |
[5] |
Barrett SCH (2002) The evolution of plant sexual diversity. Nature Reviews Genetics, 3, 274-284.
DOI URL |
[6] |
Barrett SCH (2010) Darwin's legacy: The forms, function and sexual diversity of flowers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 351-368.
DOI URL |
[7] |
Barrett SCH, Case AL (2006) The ecology and evolution of gender strategies in plants: The example of Australian Wurmbea (Colchicaceae). Australian Journal of Botany, 54, 417-433.
DOI URL |
[8] |
Bierzychudek P (1984) Determinants of gender in Jack-in-the-pulpit: The influence of plant size and reproductive history. Oecologia, 65, 14-18.
DOI PMID |
[9] |
Cao GX, Kudo G (2008) Size-dependent sex allocation in a monocarpic perennial herb, Cardiocrinum cordatum (Liliaceae). Plant Ecology, 194, 99-107.
DOI URL |
[10] |
Cedro A, Iszkuło G (2011) Do females differ from males of European yew (Taxus baccata L.) in dendrochronological analysis? Tree-Ring Research, 67, 3-11.
DOI URL |
[11] |
Charnov EL (1982) The theory of sex allocation. Monographs in Population Biology, 18, 1-355.
PMID |
[12] | Cui KF, Huang LY, Chen ZS (2018) Lily in Changbai Mountain. Science Press, Beijing. (in Chinese) |
崔凯峰, 黄利亚, 陈兆双 (2018) 长白山区百合. 科学出版社, 北京.] | |
[13] |
Dai C, Galloway LF (2012) Male flowers are better fathers than hermaphroditic flowers in andromonoecious Passiflora incarnata. New Phytologist, 193, 787-796.
DOI URL |
[14] | Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita (1980) Flora Reipublicae Popularis Sinicae, Tomus 14. Science Press, Beijing. (in Chinese) |
[中国科学院中国植物志编辑委员会 (1980) 中国植物志, 14卷. 科学出版社, 北京.] | |
[15] |
Devaux C, Lepers C, Porcher E (2014) Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems. Journal of Evolutionary Biology, 27, 1413-1430.
DOI PMID |
[16] |
Elle E (1999) Sex allocation and reproductive success in the andromonoecious perennial Solanum carolinense (Solanaceae). I. Female success. American Journal of Botany, 86, 278-286.
PMID |
[17] |
Freeman DC, Harper KT, Charnov EL (1980) Sex change in plants: Old and new observations and new hypotheses. Oecologia, 47, 222-232.
DOI PMID |
[18] | Gong QB, Li ZM, Peng DL, Niu Y, Sun H, Zhang ZQ (2015) Male flowers and relationship between plant size and sex expression in herbaria of Nomocharis species (Liliaceae). Plant Diversity, 37, 11-20. (in Chinese with English abstract) |
[龚强帮, 李志敏, 彭德力, 牛洋, 孙航, 张志强 (2015) 利用腊叶标本初探豹子花属植物的性表达及其与个体大小的关系. 植物分类与资源学报, 37, 11-20.] | |
[19] |
Guo H, Mazer SJ, Du GZ (2010) Geographic variation in primary sex allocation per flower within and among 12 species of Pedicularis (Orobanchaceae): Proportional male investment increases with elevation. American Journal of Botany, 97, 1334-1341.
DOI URL |
[20] | Howroyd JD, Stoyan D, Stoyan H (1996) Fractals, random shapes and point fields: Methods of geometrical statistics. Biometrics, 52, 377-378. |
[21] | Huang SQ, Guo YH (2000) Advance in study on pollination biology. Chinese Science Bulletin, 45, 225-237. (in Chinese) |
[黄双全, 郭友好 (2000) 传粉生物学的研究进展. 科学通报, 45, 225-237.] | |
[22] |
Ishida K, Hiura T (1998) Pollen fertility and flowering phenology in an androdioecious tree, Fraxinus lanuginosa (Oleaceae), in Hokkaido, Japan. International Journal of Plant Sciences, 159, 941-947.
DOI URL |
[23] |
Jones B, Gliddon C (1999) Reproductive biology and genetic structure in Lloydia serotina. Plant Ecology, 141, 151-161.
DOI URL |
[24] |
Kawagoe T, Suzuki N (2005) Self-pollen on a stigma interferes with outcrossed seed production in a self-incompatible monoecious plant, Akebia quinata (Lardizabalaceae). Functional Ecology, 19, 49-54.
DOI URL |
[25] |
Kittelson PM, Maron JL (2000) Outcrossing rate and inbreeding depression in the perennial yellow bush lupine, Lupinus arboreus (Fabaceae). American Journal of Botany, 87, 652-660.
PMID |
[26] |
Liston A, Rieseberg LH, Elias TS (1990) Functional androdioecy in the flowering plant Datisca glomerata. Nature, 343, 641-642.
DOI URL |
[27] |
Lloyd DG (1980) Sexual strategies in plants. III. A quantitative method for describing the gender of plants. New Zealand Journal of Botany, 18, 103-108.
DOI URL |
[28] | Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evolutionary Biology, 17, 255-338. |
[29] | Ma F, Wang SZ, Feng JC, Sang WG (2018) Spatial distribution patterns of snag and standing trees in a warm temperate deciduous broad-leaved forest in Dongling Mountain, Beijing. Acta Ecologica Sinica, 38, 5717-5725. (in Chinese with English abstract) |
[马芳, 王顺忠, 冯金朝, 桑卫国 (2018) 北京东灵山暖温带落叶阔叶林枯立木与活立木空间分布格局. 生态学报, 38, 5717-5725.] | |
[30] |
Maki M (1993) Floral sex ratio variation in hermaphrodites of gynodioecious Chionographis japonica var. kurohimensis Ajima et Satomi (Liliaceae). Journal of Plant Research, 106, 181-186.
DOI URL |
[31] | Mancuso E, Peruzzi L (2010) Male individuals in cultivated Fritillaria persica L. (Liliaceae): Real androdioecy or gender disphasy? Turkish Journal of Botany, 34, 435-440. |
[32] |
Manicacci D, Després L (2001) Male and hermaphrodite flowers in the alpine lily Lloydia serotina. Canadian Journal of Botany, 79, 1107-1114.
DOI URL |
[33] |
Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends in Ecology & Evolution, 6, 320-325.
DOI URL |
[34] |
McKee J, Richards AJ (1998) The effect of temperature on reproduction in five Primula species. Annals of Botany, 82, 359-374.
DOI URL |
[35] |
Muenchow G (1998) Subandrodioecy and male fitness in Sagittaria lancifolia subsp. lancifolia (Alismataceae). American Journal of Botany, 85, 513-520.
PMID |
[36] |
Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15, 278-285.
DOI URL |
[37] | Ni RQ, Tang JY, Cheng YX, Zhang CY, Chen BB, He HJ, Xia FC (2013) Spatial distribution patterns and associations of main tree species in spruce-firforest in Changbai Mountains, northeastern China. Journal of Beijing Forestry University, 35(6), 28-35. (in Chinese with English abstract) |
[倪瑞强, 唐景毅, 程艳霞, 张春雨, 陈贝贝, 何怀江, 夏富才 (2013) 长白山云冷杉林主要树种空间分布及其关联性. 北京林业大学学报, 35(6), 28-35.] | |
[38] |
Niu Y, Gong QB, Peng DL, Sun H, Li ZM (2017) Function of male and hermaphroditic flowers and size-dependent gender diphasy of Lloydia oxycarpa (Liliaceae) from Hengduan Mountains. Plant Diversity, 39, 187-193.
DOI URL |
[39] |
Pannell JR (2002a) The evolution and maintenance of androdioecy. Annual Review of Ecology and Systematics, 33, 397-425.
DOI URL |
[40] |
Pannell JR (2002b) What is functional androdioecy? Functional Ecology, 16, 862-865.
DOI URL |
[41] |
Peruzzi L, Mancuso E, Gargano D (2012) Males are cheaper, or the extreme consequence of size/age-dependent sex allocation: Sexist gender diphasy in Fritillaria montana (Liliaceae). Botanical Journal of the Linnean Society, 168, 323-333.
DOI URL |
[42] | Peruzzi L, Tison JM, Peterson A, Peterson J (2008) On the phylogenetic position and taxonomic value of Gagea trinervia (Viv.) Greuter and Gagea sect. Anthericoides A. Terracc. (Liliaceae). Taxon, 57, 1201-1214. |
[43] |
Philbrick CT, Rieseberg LH (1994) Pollen production in the androdioecious Datisca glomerata (Datiscaceae): Implications for breeding system equilibrium. Plant Species Biology, 9, 43-46.
DOI URL |
[44] | Policansky D (1981) Sex choice and the size advantage model in jack-in-the-pulpit (Arisaema triphyllum). Proceedings of the National Academy of Sciences, USA, 78, 1306-1308. |
[45] |
Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany, 101, 1588-1596.
DOI URL |
[46] |
Ripley BD (1977) Modelling spatial patterns. Journal of the Royal Statistical Society: Series B (Methodological), 39, 172-192.
DOI URL |
[47] |
Robakowski P, Pers-Kamczyc E, Ratajczak E, Thomas PA, Ye ZP, Rabska M, Iszkuło G (2018) Photochemistry and antioxidative capacity of female and male Taxus baccata L. acclimated to different nutritional environments. Frontiers in Plant Science, 9, 742.
DOI PMID |
[48] | Rong LP, Lei JJ, Wang ZG (2009) Genetic diversity of wild lilies native to northeastern China by RAPD markers. Jiangsu Journal of Agricultural Sciences, 25, 843-846. (in Chinese with English abstract) |
[荣立苹, 雷家军, 王志刚 (2009) 东北地区野生百合遗传多样性的RAPD分析. 江苏农业学报, 25, 843-846.] | |
[49] |
Rovere AE, Aizen M, Kitzberger T (2003) Growth and climatic response of male and female trees of Austrocedrus chilensis, a dioecious conifer from the temperate forests of southern South America. Écoscience, 10, 195-203.
DOI URL |
[50] |
Sabatti M, Gaudet M, Müller NA, Kersten B, Gaudiano C, Mugnozza GS, Fladung M, Beritognolo I (2020) Long-term study of a subdioecious Populus × canescens family reveals sex lability of females and reproduction behaviour of cosexual plants. Plant Reproduction, 33, 1-17.
DOI URL |
[51] |
Schlessman MA (1987) Gender modification in North American ginsengs. BioScience, 37, 469-475.
DOI URL |
[52] |
Schlessman MA (1991) Size, gender, and sex change in dwarf ginseng, Panax trifolium (Araliaceae). Oecologia, 87, 588-595.
DOI PMID |
[53] |
Sheridan PM, Karowe DN (2000) Inbreeding, outbreeding, and heterosis in the yellow pitcher plant, Sarracenia flava (Sarraceniaceae), in Virginia. American Journal of Botany, 87, 1628-1633.
PMID |
[54] | Shi Y (2019) Effects of Nitrogen Input on Carbon and Nitrogen Transformations in Peatlands. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract) |
[施瑶 (2019) 氮输入对泥炭沼泽碳氮转化的影响研究. 博士学位论文, 东北师范大学, 长春.] | |
[55] |
Vallejo-Marín M, Rausher MD (2007) Selection through female fitness helps to explain the maintenance of male flowers. The American Naturalist, 169, 563-568.
PMID |
[56] |
Vassiliadis C, Lepart J, Saumitou‐Laprade P, Vernet P (2000) Self-incompatibility and male fertilization success in Phillyrea angustifolia (Oleaceae). International Journal of Plant Sciences, 161, 393-402.
PMID |
[57] |
Wang J, Zhai YX, Zhang AQ (2018) Temporal variation of plant sexes in a wild population of Tulipa sinkiangensis over seven years. Biodiversity Science, 26, 519-526. (in Chinese with English abstract)
DOI |
[王娟, 翟雅芯, 张爱勤 (2018) 新疆郁金香一居群个体性别7年的动态变化. 生物多样性, 26, 519-526.]
DOI |
|
[58] | Wang LB, Huang YH, Fan CY, Zhang XN, Wang J (2020) Study on gender differentiation of reproduction cost in Rhamnus schneideri var. manshurica. Journal of Central South University of Forestry & Technology, 40(12), 69-74. (in Chinese with English abstract) |
[王俪玢, 黄云浩, 范春雨, 张新娜, 王娟 (2020) 东北鼠李生殖耗费的性别分异研究. 中南林业科技大学学报, 40(12), 69-74.] | |
[59] | Wang Q, Ao YY, Li WQ, Qin F, Yang SQ, Ding B, Deng HP (2020) Sex ratio and spatial pattern of Eurya loquaiana population in Jinyun Mountain. Acta Ecologica Sinica, 40, 6057-6066. (in Chinese with English abstract) |
[王茜, 敖艳艳, 李文巧, 秦菲, 杨思琴, 丁博, 邓洪平 (2020) 缙云山细枝柃种群性比及空间分布. 生态学报, 40, 6057-6066.] | |
[60] |
Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany, 24, 163-178.
DOI URL |
[61] |
Weller SG (2009) The different forms of flowers-What have we learned since Darwin? Botanical Journal of the Linnean Society, 160, 249-261.
DOI URL |
[62] |
Yakimowski SB, Barrett SCH (2014) Variation and evolution of sex ratios at the northern range limit of a sexually polymorphic plant. Journal of Evolutionary Biology, 27, 1454-1466.
DOI PMID |
[63] | Yu CB, Cui KF, Xu JD, Huang LY, Ma HY, Feng XC, Jin ZJ (2019) Growth habits and artificial domestication cultivation techniques of Lilium megalanthum in Changbai Mountain area. Journal of Beihua University (Natural Science), 20, 451-454. (in Chinese with English abstract) |
[于长宝, 崔凯峰, 徐金丹, 黄利亚, 马宏宇, 冯秀春, 金哲军 (2019) 长白山区大花百合生长习性与人工驯化栽培技术. 北华大学学报(自然科学版), 20, 451-454.] | |
[64] | Yuan C, Tan L, Xu L, Tong X, You ZQ, Chen Y (2021) Linking the pollen supply patterns of Ficus tikoua to its potential suitable areas and key environmental factors. Acta Ecologica Sinica, 41, 2384-2397. (in Chinese with English abstract) |
[袁川, 谭露, 徐亮, 童鑫, 游章强, 陈艳 (2021) 地果花粉供应格局成因和适生区分析. 生态学报, 41, 2384-2397.] | |
[65] |
Zhang DY, Jiang XH (2002) Size-dependent resource allocation and sex allocation in herbaceous perennial plants. Journal of Evolutionary Biology, 15, 74-83.
DOI URL |
[66] | Zhang T, Tan DY (2008) Adaptive significances of sexual system in andromonoecious Capparis spinosa (Capparaceae). Journal of Systematics and Evolution, 46, 861-873. (in Chinese with English abstract) |
[张涛, 谭敦炎 (2008) 刺山柑雄全同株性系统的适应意义. 植物分类学报, 46, 861-873.] | |
[67] |
Zhang ZC, Tan DY (2012) Floral sex allocation and flowering pattern in the andromonocious Soranthus meyeri (Apiaceae). Chinese Journal of Plant Ecology, 36, 63-71. (in Chinese with English abstract)
DOI URL |
[张振春, 谭敦炎 (2012) 雄全同株植物簇花芹花期性别分配与开花式样. 植物生态学报, 36, 63-71.] | |
[68] |
Zhang ZQ, Zhu XF, Sun H, Yang YP, Barrett SCH (2014) Size-dependent gender modification in Lilium apertum (Liliaceae): Does this species exhibit gender diphasy? Annals of Botany, 114, 441-453.
DOI URL |
[69] | Zhou Y (2006) Quantitative study of conservation priority of the rare and threatened ornamental plants in Changbai Mountains. Journal of Wuhan Botanical Research, 24, 357-364. (in Chinese with English abstract) |
[周繇 (2006) 长白山区珍稀濒危观赏植物优先保护定量研究. 武汉植物学研究, 24, 357-364.] |
[1] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[2] | 李晶, 周天阳, 鲁雪丽, 李新涛, 孙斌, 孟红杰. 珍稀植物连香树在其中国分布区北缘的种子性状及幼苗更新限制[J]. 生物多样性, 2020, 28(10): 1161-1173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn