生物多样性 ›› 2023, Vol. 31 ›› Issue (5): 23062. DOI: 10.17520/biods.2023062
李苗1,2,3,4, 要晨阳1,2,3,4, 陈小勇1,2,3,*()
收稿日期:
2023-02-28
接受日期:
2023-04-20
出版日期:
2023-05-20
发布日期:
2023-05-03
通讯作者:
* E-mail: 基金资助:
Miao Li1,2,3,4, Chenyang Yao1,2,3,4, Xiaoyong Chen1,2,3,*()
Received:
2023-02-28
Accepted:
2023-04-20
Online:
2023-05-20
Published:
2023-05-03
Contact:
* E-mail: 摘要:
生物监测是开展生物多样性保护的基础性工作, 同时也是评估生物多样性保护进展的有效途径。传统的水生生物监测以样品采集与形态学鉴定为基础, 耗时耗力且效果不佳, 已无法满足现阶段大尺度的持续性生态调查需求。随着分子生物学技术的发展, eRNA技术被引入水生生物监测这一领域, 并被应用于物种监测、病原体监测以及生物多样性评价等方面, 且表现出了极大的应用潜力。然而, eRNA技术的发展仍处于概念验证阶段, 其生态学过程不明确、技术的操作流程不规范与转录组数据库的匮乏等诸多技术上的瓶颈制约着eRNA在水生生物监测中的推广与规范使用。鉴于此, 本文首先简要介绍eRNA技术, 而后详细阐述其操作流程与在水生生物监测中的应用现状, 并在此基础上着重探讨了eRNA技术在生物监测领域内所具有的优势(能够进一步提高生物监测的精度与挖掘出更多的相关信息)与面临的挑战(eRNA的生态学过程不明确、技术流程不规范以及转录组数据库匮乏), 最后对该技术在水生生物监测中的最新发展方向(eRNA的生态学过程探究、技术流程的标准化以及数据库的完善等)进行了展望, 试图通过本文为eRNA技术在水生生物监测中的规范使用提供参考。
李苗, 要晨阳, 陈小勇 (2023) 环境RNA技术在水生生物监测中的应用. 生物多样性, 31, 23062. DOI: 10.17520/biods.2023062.
Miao Li, Chenyang Yao, Xiaoyong Chen (2023) Application of environmental RNA technology in aquatic biological monitoring. Biodiversity Science, 31, 23062. DOI: 10.17520/biods.2023062.
迁移距离 Distance of transport | 存留时间 Duration of time | 区分生物活体 Distinguishing living communities | 揭示种群结构信息 Revealing information on population structure | 监测生物生理状态 Monitoring biophysiological status | |
---|---|---|---|---|---|
eDNA | 长 Long | 长 Long | × | × | × |
eRNA | 短 Short | 短 Short | √ | √ | √ |
表1 eDNA与eRNA技术参数的对比
Table 1 Comparison of eDNA and eRNA technical parameters
迁移距离 Distance of transport | 存留时间 Duration of time | 区分生物活体 Distinguishing living communities | 揭示种群结构信息 Revealing information on population structure | 监测生物生理状态 Monitoring biophysiological status | |
---|---|---|---|---|---|
eDNA | 长 Long | 长 Long | × | × | × |
eRNA | 短 Short | 短 Short | √ | √ | √ |
[1] |
Akbarzadeh A, Günther OP, Houde AL, Li SR, Ming TJ, Jeffries KM, Hinch SG, Miller KM (2018) Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics, 19, 749.
DOI PMID |
[2] |
Amarasiri M, Furukawa T, Nakajima F, Sei K (2021) Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. Science of the Total Environment, 796, 148810.
DOI URL |
[3] |
Baillon L, Pierron F, Oses J, Pannetier P, Normandeau E, Couture P, Labadie P, Budzinski H, Lambert P, Bernatchez L, Baudrimont M (2016) Detecting the exposure to Cd and PCBs by means of a non-invasive transcriptomic approach in laboratory and wild contaminated European eels (Anguilla anguilla). Environmental Science and Pollution Research, 23, 5431-5441.
DOI URL |
[4] |
Baird DJ, Hajibabaei M (2012) Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology, 21, 2039-2044.
PMID |
[5] |
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H (2023) Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends in Parasitology, 39, 285-304.
DOI PMID |
[6] |
Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annual Review of Entomology, 51, 495-523.
PMID |
[7] |
Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L, Juhel JB, Kiszka JJ, Kulbicki M, Manel S, Robbins WD, Vigliola L, Mouillot D (2018) Environmental DNA illuminates the dark diversity of sharks. Science Advances, 4, eaap9661.
DOI URL |
[8] |
Chauvet M, Debroas D, Moné A, Dubuffet A, Lepère C (2022) Temporal variations of Microsporidia diversity and discovery of new hos-tparasite interactions in a lake ecosystem. Environmental Microbiology, 24, 1672-1686.
DOI PMID |
[9] |
Ciani E, Fontaine R, Maugars G, Nourizadeh-Lillabadi R, Andersson E, Bogerd J, von Krogh K, Weltzien FA (2020) Gnrh receptor gnrhr2bbα is expressed exclusively in lhb-expressing cells in Atlantic salmon male parr. General and Comparative Endocrinology, 285, 113293.
DOI URL |
[10] |
Cristescu ME (2019) Can environmental RNA revolutionize biodiversity science? Trends in Ecology & Evolution, 34, 694-697.
DOI URL |
[11] |
Cristescu ME, Hebert PDN (2018) Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics, 49, 209-230.
DOI URL |
[12] |
Drinkwater E, Robinson EJH, Hart AG (2019) Keeping invertebrate research ethical in a landscape of shifting public opinion. Methods in Ecology and Evolution, 10, 1265-1273.
DOI |
[13] |
Drozdova P, Rivarola-Duarte L, Bedulina D, Axenov-Gribanov D, Schreiber S, Gurkov A, Shatilina Z, Vereshchagina K, Lubyaga Y, Madyarova E, Otto C, Jühling F, Busch W, Jakob L, Lucassen M, Sartoris FJ, Hackermüller J, Hoffmann S, Pörtner HO, Luckenbach T, Timofeyev M, Stadler PF (2019) Comparison between transcriptomic responses to short-term stress exposures of a common Holarctic and endemic Lake Baikal amphipods. BMC Genomics, 20, 712.
DOI PMID |
[14] |
Erickson RA, Merkes CM, Mize EL (2019) Sampling designs for landscape-level eDNA monitoring programs. Integrated Environmental Assessment and Management, 15, 760-771.
DOI PMID |
[15] |
Evans NT, Lamberti GA (2018) Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research, 197, 60-66.
DOI URL |
[16] |
Farrell JA, Whitmore L, Duffy DJ (2021) The promise and pitfalls of environmental DNA and RNA approaches for the monitoring of human and animal pathogens from aquatic sources. BioScience, 71, 609-625.
DOI URL |
[17] | Friberg N, Bonada N, Bradley DC, Dunbar MJ, Edwards FK, Grey J, Hayes RB, Hildrew AG, Lamouroux N, Trimmer M, Woodward G (2011) Biomonitoring of human impacts in freshwater ecosystems: The good, the bad and the ugly. Advances in Ecological Research, 44, 1-68. |
[18] |
Giroux MS, Reichman JR, Langknecht T, Burgess RM, Ho KT (2022) Environmental RNA as a tool for marine community biodiversity assessments. Scientific Reports, 12, 17782.
DOI PMID |
[19] |
Houde ALS, Günther OP, Strohm J, Ming TJ, Li SR, Kaukinen KH, Patterson DA, Farrell AP, Hinch SG, Miller KM (2019a) Discovery and validation of candidate smoltification gene expression biomarkers across multiple species and ecotypes of Pacific salmonids. Conservation Physiology, 7, coz051.
DOI URL |
[20] | Houde ALS, Akbarzadeh A, Günther OP, Li SR, Patterson DA, Farrell AP, Hinch SG, Miller KM (2019b) Salmonid gene expression biomarkers indicative of physiological responses to changes in salinity and temperature, but not dissolved oxygen. The Journal of Experimental Biology, 222, jeb198036. |
[21] | Huang PP, Zhao F, Xu KD (2020) Effects of sedimentation of DNA from overlying waters on the evaluation of ciliate molecular diversity in offshore sediments. Oceanologia et Limnologia Sinica, 51, 602-612. (in Chinese with English abstract) |
[黄平平, 赵峰, 徐奎栋 (2020) 近海水体环境DNA沉降对沉积物中纤毛虫分子多样性评估的影响. 海洋与湖沼, 51, 602-612.] | |
[22] |
Huang PP, Zhao F, Xu KD (2021) Complementary DNA sequencing (cDNA): An effective approach for assessing the diversity and distribution of marine benthic ciliates along hydrographic gradients. Journal of Oceanology and Limnology, 39, 208-222.
DOI |
[23] |
Huang PP, Zhao F, Xu KD, Zhou T (2020) Are marine benthic microeukaryotes different from macrobenthos in terms of regional geographical distribution? New insights revealed by RNA metabarcoding. Continental Shelf Research, 209, 104255.
DOI URL |
[24] |
Huver JR, Koprivnikar J, Johnson PTJ, Whyard S (2015) Development and application of an eDNA method to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecological Applications, 25, 991-1002.
DOI URL |
[25] | Jo T, Matsuda N, Hirohara T, Yamanaka H (2022a) Simple and efficient preservation of fish environmental RNA in filtered water samples via RNAlater. Research Square. |
[26] | Jo T, Tsuri K, Hirohara T, Yamanaka H (2022b) Warm temperature and alkaline conditions accelerate environmental RNA degradation. Environmental DNA, 1-13. |
[27] |
Jo T, Yamanaka H (2022) Meta-analyses of environmental DNA downstream transport and deposition in relation to hydrogeography in riverine environments. Freshwater Biology, 67, 1333-1343.
DOI URL |
[28] |
Kitahashi T, Sugime S, Inomata K, Nishijima M, Kato S, Yamamoto H (2020) Meiofaunal diversity at a seamount in the Pacific Ocean: A comprehensive study using environmental DNA and RNA. Deep Sea Research Part I: Oceanographic Research Papers, 160, 103253.
DOI URL |
[29] |
Laroche O, Wood SA, Tremblay LA, Lear G, Ellis JI, Pochon X (2017) Metabarcoding monitoring analysis: The pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ, 5, e3347.
DOI URL |
[30] |
Laroche O, Wood SA, Tremblay LA, Ellis JI, Lear G, Pochon X (2018) A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations. Marine Pollution Bulletin, 127, 97-107.
DOI PMID |
[31] |
Littlefair JE, Rennie MD, Cristescu ME (2022) Environmental nucleic acids: A field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Molecular Ecology Resources, 22, 2928-2940.
DOI PMID |
[32] |
Marcos PL, Adalberto LV (2015) Differentially expressed genes in the pituitary of the Amazonian fish Arapaima gigas. International Journal of Fisheries and Aquaculture, 7, 132-141.
DOI URL |
[33] |
Marshall NT, Vanderploeg HA, Chaganti SR (2021) Environmental (e)RNA advances the reliability of eDNA by predicting its age. Scientific Reports, 11, 2769.
DOI PMID |
[34] |
Mérou N, Lecadet C, Pouvreau S, Arzul I (2020) An eDNA/eRNA-based approach to investigate the life cycle of non-cultivable shellfish micro-parasites: The case of Bonamia ostreae, a parasite of the European flat oyster Ostrea edulis. Microbial Biotechnology, 13, 1807-1818.
DOI URL |
[35] |
Miaud C, Arnal V, Poulain M, Valentini A, Dejean T (2019) eDNA increases the detectability of Ranavirus infection in an alpine amphibian population. Viruses, 11, 526.
DOI URL |
[36] | Miller KM, Günther OP, Li SR, Kaukinen KH, Ming TJ (2017) Molecular indices of viral disease development in wild migrating salmon. Conservation Physiology, 5, cox036. |
[37] |
Miyata K, Inoue Y, Amano Y, Nishioka T, Nagaike T, Kawaguchi T, Morita O, Yamane M, Honda H (2022) Comparative environmental RNA and DNA metabarcoding analysis of river algae and arthropods for ecological surveys and water quality assessment. Scientific Reports, 12, 19828.
DOI PMID |
[38] |
Miyata K, Inoue Y, Amano Y, Nishioka T, Yamane M, Kawaguchi T, Morita O, Honda H (2021) Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecological Indicators, 128, 107796.
DOI URL |
[39] |
Nie HT, Jiang LW, Chen P, Huo ZM, Yang F, Yan XW (2017) High throughput sequencing of RNA transcriptomes in Ruditapes philippinarum identifies genes involved in osmotic stress response. Scientific Reports, 7, 4953.
DOI |
[40] |
Oomen RA, Hutchings JA (2017) Transcriptomic responses to environmental change in fishes: Insights from RNA sequencing. FACETS, 2, 610-641.
DOI URL |
[41] | Orsini L, Brown JB, Shams Solari O, Li D, He S, Podicheti R, Stoiber MH, Spanier KI, Gilbert D, Jansen M, Rusch DB, Pfrender ME, Colbourne JK, Frilander MJ, Kvist J, Decaestecker E, De Schamphelaere KAC, De Meester L (2018) Early transcriptional response pathways in Daphnia magna are coordinated in networks of crustacean-specific genes. Molecular Ecology, 27, 886-897. |
[42] |
Pearman JK, Biessy L, Howarth JD, Vandergoes MJ, Rees A, Wood SA (2022) Deciphering the molecular signal from past and alive bacterial communities in aquatic sedimentary archives. Molecular Ecology Resources, 22, 877-890.
DOI URL |
[43] |
Peters L, Spatharis S, Dario MA, Dwyer T, Roca IJT, Kintner A, Kanstad-Hanssen Ø, Llewellyn MS, Praebel K (2018) Environmental DNA: A new low-cost monitoring tool for pathogens in salmonid aquaculture. Frontiers in Microbiology, 9, 3009.
DOI PMID |
[44] |
Qian TY, Shan XJ, Wang WJ, Jin XS (2022) Effects of temperature on the timeliness of eDNA/eRNA: A case study of Fenneropenaeus chinensis. Water, 14, 1155.
DOI URL |
[45] | Ravindran SP, Lüneburg J, Gottschlich L, Tams V, Cordellier M (2019) Daphnia stressor database: Taking advantage of a decade of Daphnia ‘-omics’ data for gene annotation. Scientific Reports, 9, 11135. |
[46] |
Sato Y, Mizuyama M, Sato M, Minamoto T, Kimura R, Toma C (2019) Environmental DNA metabarcoding to detect pathogenic Leptospira and associated organisms in leptospirosis-endemic areas of Japan. Scientific Reports, 9, 6575.
DOI |
[47] | Shan XJ, Li M, Wang WJ (2018) Application of environmental DNA technology in aquatic ecosystem. Progress in Fishery Sciences, 39(3), 23-29. (in Chinese with English abstract) |
[单秀娟, 李苗, 王伟继 (2018) 环境DNA (eDNA)技术在水生生态系统中的应用研究进展. 渔业科学进展, 39(3), 23-29.] | |
[48] | Shen M, Xiao NW, Lu L, Luo ZL, Shi NN, Sun G (2022) Review of environmental DNA detection methods and their application to fish monitoring. Journal of Hydroecology, 43, 133-141. (in Chinese with English abstract) |
[沈梅, 肖能文, 卢林, 罗遵兰, 史娜娜, 孙光 (2022) 环境DNA技术及在鱼类监测中的应用. 水生态学杂志, 43, 133-141.] | |
[49] |
Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF (2020) Population-level inferences from environmental DNA—Current status and future perspectives. Evolutionary Applications, 13, 245-262.
DOI PMID |
[50] |
Skaftnesmo KO, Edvardsen RB, Furmanek T, Crespo D, Andersson E, Kleppe L, Taranger GL, Bogerd J, Schulz RW, Wargelius A (2017) Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon. BMC Genomics, 18, 801.
DOI PMID |
[51] |
Spanier KI, Jansen M, Decaestecker E, Hulselmans G, Becker D, Colbourne JK, Orsini L, De Meester L, Aerts S (2017) Conserved transcription factors steer growth-related genomic programs in Daphnia. Genome Biology and Evolution, 9, 1821-1842.
DOI PMID |
[52] |
Stevens JD, Parsley MB (2023) Environmental RNA applications and their associated gene targets for management and conservation. Environmental DNA, 5, 227-239.
DOI URL |
[53] |
Stubbington R, Chadd R, Cid N, Csabai Z, Miliša M, Morais M, Munné A, Pařil P, Pešić V, Tziortzis I, Verdonschot RCM, Datry T (2018) Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments. Science of the Total Environment, 618, 1096-1113.
DOI URL |
[54] |
Taengphu S, Kayansamruaj P, Kawato Y, Delamare-Deboutteville J, Mohan CV, Dong HT, Senapin S (2022) Concentration and quantification of Tilapia tilapinevirus from water using a simple iron flocculation coupled with probe-based RT-qPCR. PeerJ, 10, e13157.
DOI URL |
[55] |
Tsuri K, Ikeda S, Hirohara T, Shimada Y, Minamoto T, Yamanaka H (2021) Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates. Environmental DNA, 3, 14-21.
DOI URL |
[56] | Veilleux HD, Misutka MD, Glover CN (2021) Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. Science of the Total Environment, 782, 146891. |
[57] |
von Ammon U, Wood SA, Laroche O, Zaiko A, Lavery SD, Inglis GJ, Pochon X (2019) Linking environmental DNA and RNA for improved detection of the marine invasive fanworm Sabella spallanzanii. Frontiers in Marine Science, 6, 621.
DOI URL |
[58] | Wang M, Jin XW, Lin XL, Du LN, Cui YD, Wu XP, Sun HY, Xie ZC, Wang XH, Wang BX (2021) Advances in the macrozoobenthos biodiversity monitoring and ecosystem assessment using environmental DNA metabarcoding. Acta Ecologica Sinica, 41, 7440-7453. (in Chinese with English abstract) |
[王萌, 金小伟, 林晓龙, 杜丽娜, 崔永德, 吴小平, 孙红英, 谢志才, 王新华, 王备新 (2021) 基于环境DNA-宏条形码技术的底栖动物监测及水质评价研究进展. 生态学报, 41, 7440-7453.] | |
[59] |
Ward GM, Feist SW, Noguera P, Marcos-López M, Ross S, Green M, Urrutia A, Bass D (2019) Detection and characterisation of haplosporidian parasites of the blue mussel Mytilus edulis, including description of the novel parasite Minchinia mytili n. sp. Diseases of Aquatic Organisms, 133, 57-68.
DOI URL |
[60] |
Watanabe Y, Tanaka R, Kobayashi H, Utoh R, Suzuki KI, Obara M, Yoshizato K (2002) Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene. Developmental Dynamics, 225, 561-570.
PMID |
[61] |
Wood SA, Biessy L, Latchford JL, Zaiko A, von Ammon U, Audrezet F, Cristescu ME, Pochon X (2020) Release and degradation of environmental DNA and RNA in a marine system. Science of the Total Environment, 704, 135314.
DOI URL |
[62] |
Wu H, Xu XH, Feng XJ, Mi XC, Su YJ, Xiao ZS, Zhu CD, Cao L, Gao X, Song CY, Guo LD, Wu DH, Jiang JP, Shen H, Ma KP (2022) Progress and prospect of China biodiversity monitoring from a global perspective. Biodiversity Science, 30, 22434. (in Chinese with English abstract)
DOI |
[吴慧, 徐学红, 冯晓娟, 米湘成, 苏艳军, 肖治术, 朱朝东, 曹垒, 高欣, 宋创业, 郭良栋, 吴东辉, 江建平, 沈浩, 马克平 (2022) 全球视角下的中国生物多样性监测进展与展望. 生物多样性, 30, 22434.]
DOI |
|
[63] |
Yates MC, Derry AM, Cristescu ME (2021) Environmental RNA: A revolution in ecological resolution? Trends in Ecology & Evolution, 36, 601-609.
DOI URL |
[64] |
Zaiko A, von Ammon U, Stuart J, Smith KF, Yao R, Welsh M, Pochon X, Bowers HA (2022) Assessing the performance and efficiency of environmental DNA/RNA capture methodologies under controlled experimental conditions. Methods in Ecology and Evolution, 13, 1581-1594.
DOI URL |
[65] | Zhao YW, Chen JQ, Dong L, Ma XM, Bai J, Tian K (2021) Advances in the application of environmental DNA in aquatic ecosystems. Journal of Agro-Environment Science, 40, 2057-2065. (in Chinese with English abstract) |
[赵彦伟, 陈家琪, 董丽, 麻晓梅, 白洁, 田凯 (2021) 环境DNA技术在水生态领域应用研究进展. 农业环境科学学报, 40, 2057-2065.] | |
[66] |
Zilius M, Samuiloviene A, Stanislauskienė R, Broman E, Bonaglia S, Meškys R, Zaiko A (2021) Depicting temporal, functional, and phylogenetic patterns in estuarine diazotrophic communities from environmental DNA and RNA. Microbial Ecology, 81, 36-51.
DOI |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[15] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn