生物多样性 ›› 2023, Vol. 31 ›› Issue (1): 22513. DOI: 10.17520/biods.2022513 cstr: 32101.14.biods.2022513
• 中国野生脊椎动物鸣声监测与生物声学研究专题 • 上一篇 下一篇
张屹美1, 王言一1, 何衍2, 周冰1, 田苗1, 夏灿玮1,*()
收稿日期:
2022-09-06
接受日期:
2022-12-16
出版日期:
2023-01-20
发布日期:
2023-01-31
通讯作者:
*夏灿玮, E-mail: xiacanwei@bnu.edu.cn
基金资助:
Yimei Zhang1, Yanyi Wang1, Yan He2, Bing Zhou1, Miao Tian1, Canwei Xia1,*()
Received:
2022-09-06
Accepted:
2022-12-16
Online:
2023-01-20
Published:
2023-01-31
Contact:
*Canwei Xia, E-mail: xiacanwei@bnu.edu.cn
摘要:
随着录音设备性能的提高和硬件价格的降低, 基于录音评估声景来反映生境特征和生物多样性的方法得到快速发展。声学指数是对声音整体特征的量化, 受到录音生境和生物组成的共同影响, 因此可构建声学指数与生境特征和生物组成的关联。按照作用的尺度, 声学指数可分为两类: 反映录音内信息的alpha声学指数和比较不同录音之间差异的beta声学指数。随着录音设备的普及, 以及在大尺度上进行生物监测工作的增加, 对不同时间、不同地点的录音进行比较的需求日益迫切。因此, beta声学指数的开发和应用是声学指数研究的重要方向。本文介绍了11个常用的beta声学指数, 并探讨了这些指数的数学特征(非负性、同一性、对称性、直递性、有限性)。本文还通过文献检索获取了beta声学指数在实证中的应用情况, 发现研究中常使用beta声学指数反映时间节律、生境特征的差异或生物组成的改变。最后, 本文指出了beta声学指数研究/应用中迫切需要发展的3个方向: 开发新的指数、优化已有指数的计算方式、增加实证研究。
张屹美, 王言一, 何衍, 周冰, 田苗, 夏灿玮 (2023) Beta声学指数的特征和应用. 生物多样性, 31, 22513. DOI: 10.17520/biods.2022513.
Yimei Zhang, Yanyi Wang, Yan He, Bing Zhou, Miao Tian, Canwei Xia (2023) Characteristics and applications of beta acoustic indices. Biodiversity Science, 31, 22513. DOI: 10.17520/biods.2022513.
声学指数 Acoustic index | 计算公式 Computing formula | 公式中符号的含义 Meaning of symbols in the formula | 参考文献 Reference |
---|---|---|---|
交互信息指数 Mutual information index (MI) | H1, H2, | 2004 | |
相对频谱差异指数 Relative frequency dissimilarity index (RF) | xi, yi分别为两段声音各自频段的相对音强 xi, yi are the relative sound intensity in each frequency band of each sound | 2006 | |
时间差异指数 Temporal dissimilarity index (TD) | si, ti分别为两段声音各自时段的相对音强 si, ti are the relative sound intensity in each time period of each sound | 2008 | |
频谱差异指数 Spectral dissimilarity index (SD) | 同RF Same as in the formula of RF | 2008 | |
声音差异指数 Acoustic dissimilarity index (AD) | TD和SD的乘积 Product of TD and SD | 2008 | |
Kolmogorov-Smirnov距离指数 Kolmogorov-Smirnov distance index (KS) | Xi, Yi分别为两段声音每个频率的累积音强 Xi, Yi are the cumulative sound intensity in each frequency of each sound | 2013a | |
Kullback-Leibler距离指数 Kullback-Leibler distance index (KL) | 同RF Same as in the formula of RF | 2013a | |
累积频谱差异指数 Cumulative spectral dissimilarity index (CS) | 同KS Same as in the formula of KS | 2014 | |
相关差异指数 Correlation-based dissimilarity index (CB) | 同RF Same as in the formula of RF | 2014 | |
Itakura-Saito距离指数 Itakura-Saito distance index (IS) | 同RF Same as in the computing of RF | 2018 | |
对数频谱距离指数 Log-spectral distance index (LS) | 同RF Same as in the formula of RF | 2018 |
表1 常用beta声学指数介绍
Table 1 Description of the commonly used beta acoustic indices
声学指数 Acoustic index | 计算公式 Computing formula | 公式中符号的含义 Meaning of symbols in the formula | 参考文献 Reference |
---|---|---|---|
交互信息指数 Mutual information index (MI) | H1, H2, | 2004 | |
相对频谱差异指数 Relative frequency dissimilarity index (RF) | xi, yi分别为两段声音各自频段的相对音强 xi, yi are the relative sound intensity in each frequency band of each sound | 2006 | |
时间差异指数 Temporal dissimilarity index (TD) | si, ti分别为两段声音各自时段的相对音强 si, ti are the relative sound intensity in each time period of each sound | 2008 | |
频谱差异指数 Spectral dissimilarity index (SD) | 同RF Same as in the formula of RF | 2008 | |
声音差异指数 Acoustic dissimilarity index (AD) | TD和SD的乘积 Product of TD and SD | 2008 | |
Kolmogorov-Smirnov距离指数 Kolmogorov-Smirnov distance index (KS) | Xi, Yi分别为两段声音每个频率的累积音强 Xi, Yi are the cumulative sound intensity in each frequency of each sound | 2013a | |
Kullback-Leibler距离指数 Kullback-Leibler distance index (KL) | 同RF Same as in the formula of RF | 2013a | |
累积频谱差异指数 Cumulative spectral dissimilarity index (CS) | 同KS Same as in the formula of KS | 2014 | |
相关差异指数 Correlation-based dissimilarity index (CB) | 同RF Same as in the formula of RF | 2014 | |
Itakura-Saito距离指数 Itakura-Saito distance index (IS) | 同RF Same as in the computing of RF | 2018 | |
对数频谱距离指数 Log-spectral distance index (LS) | 同RF Same as in the formula of RF | 2018 |
声学指数Acoustic index* | 非负性 Non-negativity | 同一性 Self-identity | 对称性 Symmetry | 直递性 Triangle inequality | 有限性 Finiteness |
---|---|---|---|---|---|
MI | 否 No | 否 No | 是 Yes | 否 No | 是 Yes |
RF | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
TD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
SD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
AD | 是 Yes | 否 No | 是 Yes | 否 No | 否 No |
KS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
KL | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
CS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
CB | 是 Yes | 是 Yes | 是 Yes | 否 No | 是 Yes |
IS | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
LS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
表2 Beta声学指数的数学特征
Table 2 Mathematical properties of beta acoustic indices
声学指数Acoustic index* | 非负性 Non-negativity | 同一性 Self-identity | 对称性 Symmetry | 直递性 Triangle inequality | 有限性 Finiteness |
---|---|---|---|---|---|
MI | 否 No | 否 No | 是 Yes | 否 No | 是 Yes |
RF | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
TD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
SD | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
AD | 是 Yes | 否 No | 是 Yes | 否 No | 否 No |
KS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
KL | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
CS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
CB | 是 Yes | 是 Yes | 是 Yes | 否 No | 是 Yes |
IS | 是 Yes | 是 Yes | 是 Yes | 否 No | 否 No |
LS | 是 Yes | 是 Yes | 是 Yes | 是 Yes | 否 No |
声学指数 Acoustic index* | 生物学意义 Biological significance | 文献 Reference |
---|---|---|
AD | 反映物种(鸟类、两栖类、昆虫)组成不同 Difference in species (birds, amphibians, insects) composition | 2008 |
AD | 反映生境差异(成熟森林、幼林、林地-农田交错带的比较) Difference in habitat comparison among mature forest, young forest, and forest-cropland ecotone | 2012 |
SD | 反映日节律 Daily rhythm | 2013a |
SD, KS, KL, CB | 反映鸟类物种数量不同 Difference in the number of bird species | 2013b |
CB, KL, SD, KS, CS | 反映鸟类物种数量不同 Difference in the number of bird species | 2014 |
SD | 反映日节律、生境差异(林下层和树冠层的比较) Daily rhythm, difference in habitat comparison between understory and canopy | 2014 |
AD | 反映生境差异(清除、再生、残留植被的比较) Difference in habitat comparison among cleared, regrowth and remnant vegetation conditions | 2018 |
SD, CS | 反映月相变化、生境差异(有无入侵生物啮齿类和狐狸) Lunar rhythm, difference in habitat have or not have invasive species rats and foxes | 2020 |
SD, CS | 反映日节律、生境差异(油棕种植园和周围森林的比较) Daily rhythm, difference in habitat comparison between oil palm plantation and surrounding forests | 2020 |
AD | 反映日节律和季节变化 Daily rhythm, seasonal variation | 2022 |
SD, TD, CS, AD, KS, CB, MI, LS, RF | 反映生境差异(混交林、落叶林的比较) Difference in habitat comparison between mixed-use corridor and deciduous forest | 2022 |
表3 Beta声学指数的应用
Table 3 The application of beta acoustic indices
声学指数 Acoustic index* | 生物学意义 Biological significance | 文献 Reference |
---|---|---|
AD | 反映物种(鸟类、两栖类、昆虫)组成不同 Difference in species (birds, amphibians, insects) composition | 2008 |
AD | 反映生境差异(成熟森林、幼林、林地-农田交错带的比较) Difference in habitat comparison among mature forest, young forest, and forest-cropland ecotone | 2012 |
SD | 反映日节律 Daily rhythm | 2013a |
SD, KS, KL, CB | 反映鸟类物种数量不同 Difference in the number of bird species | 2013b |
CB, KL, SD, KS, CS | 反映鸟类物种数量不同 Difference in the number of bird species | 2014 |
SD | 反映日节律、生境差异(林下层和树冠层的比较) Daily rhythm, difference in habitat comparison between understory and canopy | 2014 |
AD | 反映生境差异(清除、再生、残留植被的比较) Difference in habitat comparison among cleared, regrowth and remnant vegetation conditions | 2018 |
SD, CS | 反映月相变化、生境差异(有无入侵生物啮齿类和狐狸) Lunar rhythm, difference in habitat have or not have invasive species rats and foxes | 2020 |
SD, CS | 反映日节律、生境差异(油棕种植园和周围森林的比较) Daily rhythm, difference in habitat comparison between oil palm plantation and surrounding forests | 2020 |
AD | 反映日节律和季节变化 Daily rhythm, seasonal variation | 2022 |
SD, TD, CS, AD, KS, CB, MI, LS, RF | 反映生境差异(混交林、落叶林的比较) Difference in habitat comparison between mixed-use corridor and deciduous forest | 2022 |
[1] | Baraty S, Simovici DA, Zara C (2011) The impact of triangular inequality violations on medoid-based clustering. In: International Symposium on Methodologies for Intelligent Systems (eds Kryszkiewicz M, Rybinski H, Skowron A, Raś ZW), pp. 280-289. Springer, Heidelberg. |
[2] |
Borker AL, Buxton RT, Jones IL, Major HL, Williams JC, Tershy BR, Croll DA (2020) Do soundscape indices predict landscape-scale restoration outcomes? A comparative study of restored seabird island soundscapes. Restoration Ecology, 28, 252-260.
DOI URL |
[3] |
Bradfer-Lawrence T, Gardner N, Bunnefeld L, Bunnefeld N, Willis SG, Dent DH (2019) Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 10, 1796-1807.
DOI |
[4] | Budka M, Jobda M, Szałański P, Piórkowski H (2022) Acoustic approach as an alternative to human-based survey in bird biodiversity monitoring in agricultural meadows. PLoS ONE, 17, e0266557. |
[5] |
Cazelles B (2004) Symbolic dynamics for identifying similarity between rhythms of ecological time series. Ecology Letters, 7, 755-763.
DOI URL |
[6] | Cha SH (2007) Comprehensive survey on distance/similarity measures between probability density. International Journal of Mathematical Models and Methods in Applied Science, 1, 300-307. |
[7] | Clement P, Desch W (2008) An elementary proof of the triangle inequality for the Wasserstein metric. Proceedings of the American Mathematical Society, 136, 333-339. |
[8] |
Deecke VB, Janik VM (2006) Automated categorization of bioacoustic signals: Avoiding perceptual pitfalls. The Journal of the Acoustical Society of America, 119, 645-653.
DOI URL |
[9] |
Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J (2012) Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 13, 46-54.
DOI URL |
[10] | Deza E, Deza MM (2006) Dictionary of Distances. Elsevier, Amsterdam. |
[11] | Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 147-153. Washington, DC. |
[12] |
Farina A (2019) Ecoacoustics: A quantitative approach to investigate the ecological role of environmental sounds. Mathematics, 7, 21.
DOI URL |
[13] |
Févotte C, Bertin N, Durrieu JL (2009) Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. Neural Computation, 21, 793-830.
DOI PMID |
[14] |
Gasc A, Francomano D, Dunning JB, Pijanowski BC (2017) Future directions for soundscape ecology: The importance of ornithological contributions. The Auk, 134, 215-228.
DOI URL |
[15] |
Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S (2013a) Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279-287.
DOI URL |
[16] | Gasc A, Sueur J, Pavoine S, Pellens R, Grandcolas P (2013b) Biodiversity sampling using a global acoustic approach: Contrasting sites with microendemics in New Caledonia. PLoS ONE, 8, e65311. |
[17] | Hayashi K, Erwinsyah, Lelyana VD, Yamamura K (2020) Acoustic dissimilarities between an oil palm plantation and surrounding forests: Analysis of index time series for beta-diversity in South Sumatra, Indonesia. Ecological Indicators, 112, 106086. |
[18] | Hou YN, Zhang X, Guo Y, Yu XW, Ouyang X, Yang ML (2022) Analysis of soundscape components and influencing spatial factors in the Shennongjia National Park, China. Journal of Forest and Environment, 42, 29-37. (in Chinese with English abstract) |
[侯亚男, 张旭, 郭颖, 于新文, 欧阳萱, 杨铭伦 (2022) 神农架声景构成及空间影响因素. 森林与环境学报, 42, 29-37.] | |
[19] | Krause B (1993) The niche hypothesis. Soundscape Newsletter, 6, 6-10. |
[20] | Kryszkiewicz M, Lasek P (2010) Ti-dbscan:Clustering with dbscan by means of the triangle inequality. In: In: International Conference on Rough Sets and Current Trends in Computing (eds Szczuka M, Kryszkiewicz M, Ramanna S, Jensen R, Hu Q), pp. 60-69. Springer, Heidelberg. |
[21] | Lawrence BT, Hornberg J, Haselhoff T, Sutcliffe R, Ahmed S, Moebus S, Gruehn D (2022) A widened array of metrics (WAM) approach to characterize the urban acoustic environment: A case comparison of urban mixed-use and forest. Applied Acoustics, 185, 108387. |
[22] |
Lellouch L, Pavoine S, Jiguet F, Glotin H, Sueur J (2014) Monitoring temporal change of bird communities with dissimilarity acoustic indices. Methods in Ecology and Evolution, 5, 495-505.
DOI URL |
[23] |
Lun KH, Zhang YY, Xia CW (2017) Bird diversity monitoring based on sound index. Bulletin of Biology, 52(11), 1-5. (in Chinese)
DOI URL |
[伦可环, 张雁云, 夏灿玮 (2017) 基于声音指数的鸟类多样性监测. 生物学通报, 52(11), 1-5.] | |
[24] | Moore AW (2000) The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (eds Boutilier C, Goldszmidt M), pp. 397-405. Morgan Kaufmann, San Francisco. |
[25] |
Ng ML, Butler N, Woods N (2018) Soundscapes as a surrogate measure of vegetation condition for biodiversity values: A pilot study. Ecological Indicators, 93, 1070-1080.
DOI URL |
[26] |
Pan JS, McInnes FR, Jack MA (1996) Fast clustering algorithms for vector quantization. Pattern Recognition, 29, 511-518.
DOI URL |
[27] |
Pieretti N, Farina A, Morri D (2011) A new methodology to infer the singing activity of an avian community: The acoustic complexity index (ACI). Ecological Indicators, 11, 868-873.
DOI URL |
[28] |
Rodriguez A, Gasc A, Pavoine S, Grandcolas P, Gaucher P, Sueur J (2014) Temporal and spatial variability of animal sound within a neotropical forest. Ecological Informatics, 21, 133-143.
DOI URL |
[29] | Sueur J (2018) Sound Analysis and Synthesis with R. Springer. |
[30] |
Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014) Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100, 772-781.
DOI URL |
[31] | Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS ONE, 3, e4065. |
[32] |
Szulga A (1983) On minimal metrics in the space of random- variables. Theory of Probability and Its Applications, 27, 424-430.
DOI URL |
[33] |
Wang DP, Forstmeier W, Farine DR, Maldonado-Chaparro AA, Martin K, Pei YF, Alarcón-Nieto G, Klarevas-Irby JA, Ma SW, Aplin LM, Kempenaers B (2022) Machine learning reveals cryptic dialects that explain mate choice in a songbird. Nature Communications, 13, 1630.
DOI PMID |
[34] |
Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
DOI URL |
[35] |
Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69-94.
DOI URL |
[36] | Wilford DC, Miksis-Olds JL, Martin SB, Howard DR, Lowell K, Lyons AP, Smith MJ (2021) Quantitative soundscape analysis to understand multidimensional features. Frontiers in Marine Science, 8, 672336. |
[37] |
Zhao Y, Shen XL, Li S, Zhang YY, Peng RH, Ma KP (2020) Progress and outlook for soundscape ecology. Biodiversity Science, 28, 806-820. (in Chinese with English abstract)
DOI |
[赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平 (2020) 声景生态学研究进展和展望. 生物多样性, 28, 806-820.]
DOI |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[6] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[7] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[8] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[9] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[10] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[11] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[12] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[13] | 农荞伊, 曹军, 程文达, 彭艳琼. 不同方法对蜜蜂总科昆虫资源与多样性监测效果的比较[J]. 生物多样性, 2025, 33(4): 25057-. |
[14] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[15] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn