生物多样性 ›› 2022, Vol. 30 ›› Issue (6): 21310. DOI: 10.17520/biods.2021310
所属专题: 青藏高原生物多样性与生态安全
• 研究报告: 生态系统多样性 • 下一篇
涂文娜1,2, 易嘉伟1,2, 杜云艳1,2,*(), 王楠1,2, 千家乐1,2, 黄胜1,2, 王晓悦1,2
收稿日期:
2021-08-11
接受日期:
2022-04-19
出版日期:
2022-06-20
发布日期:
2022-06-19
通讯作者:
杜云艳
作者简介:
* E-mail: duyy@lreis.ac.cn基金资助:
Wenna Tu1,2, Jiawei Yi1,2, Yunyan Du1,2,*(), Nan Wang1,2, Jiale Qian1,2, Sheng Huang1,2, Xiaoyue Wang1,2
Received:
2021-08-11
Accepted:
2022-04-19
Online:
2022-06-20
Published:
2022-06-19
Contact:
Yunyan Du
摘要:
开展保护区人类活动压力定量评估对保护区内生态系统安全、降低人类活动影响具有重要意义。许多学者从人类活动对生物多样性、生物的生境或生态系统服务及其价值的影响等角度已开展了大量研究, 但由于反映人类活动的统计数据在时空尺度上较粗, 难以精细刻画保护区内短期动态的人类活动干扰。本研究尝试通过记录人的位置到访信息的高时空分辨率数字足迹数据, 以青海湖国家级自然保护区为研究区域, 利用0.01°逐日的定位请求数据和草地生物量数据, 从人类数字足迹覆盖率、数字足迹强度和草地生物量的人类活动暴露度3个指标上对青海湖自然保护区内人类数字足迹入侵强度及其对生态环境的影响开展了研究。研究结果显示, 青海湖保护区人类数字足迹具有“多尖峰、南高北低、景区节律”的时空模式; 每日人类数字足迹覆盖率和足迹强度呈现按月聚集模式, 最大值分别为7.42%和5.24; 草地生物量的人类活动暴露度显示人类数字足迹对青海湖二郎剑-黑马河沿线的草地生物量影响最大, 此时草地生物量的人类活动暴露度水平在热门旅游景点较高, 最高达到2.24。通过位置大数据挖掘青海湖保护区内人类数字足迹的时空变化及其对于生态环境的影响, 不仅证明了数字足迹用于人类活动对于生态环境影响研究的有效性, 也为保护区生态环境精细化的管理提供支撑。
涂文娜, 易嘉伟, 杜云艳, 王楠, 千家乐, 黄胜, 王晓悦 (2022) 青海湖自然保护区人类数字足迹及草地生物量的人类活动暴露度的时空模式分析. 生物多样性, 30, 21310. DOI: 10.17520/biods.2021310.
Wenna Tu, Jiawei Yi, Yunyan Du, Nan Wang, Jiale Qian, Sheng Huang, Xiaoyue Wang (2022) A spatiotemporal analysis of human digital footprint and the human activities exposure of grassland biomass in Qinghai Lake National Nature Reserve. Biodiversity Science, 30, 21310. DOI: 10.17520/biods.2021310.
图1 青海湖保护区(内部)及其等面积缓冲区(外部)的人类数字足迹强度空间分布图。各网格内人类数字足迹强度(β)为全年腾讯定位请求量的平均值。
Fig. 1 The spatial distribution of human digital footprint in the Qinghai Lake National Nature Reserve and its equal-area external buffer zone. The human digital footprint intensity (β) for each grid is the average of Tencent’s location requests throughout the year.
图2 青海湖保护区内部与外部的人类数字足迹强度(a), 灰色区间为节日假期区间; 青海湖保护区内部与外部的人类数字足迹强度的周期图谱(b), 人类数字足迹强度周节律(c)和人类数字足迹强度日节律(d)。
Fig. 2 The human digital footprint intensity (β) inside and outside Qinghai Lake National Nature Reserve (a), the grey area is the holiday; The periodogram of β (b), the weekly rhythm of β (c) and the daily rhythm of β (d) inside and outside the Qinghai Lake National Nature Reserve.
图3 每日人类数字足迹覆盖率的核密度估计图(a); 每日人类数字足迹覆盖率、每日人类数字足迹强度的散点分布图(b); 每日人类数字足迹强度的核密度估计图(c); 每月人类数字足迹覆盖率柱状图(d); 每月人类数字足迹强度柱状图(e), 图d、e的图例与图b一致。2017年、2018年沙岛的人类数字足迹强度(f、g); 2017年、2018年鸟岛的人类数字足迹强度(h、i)。
Fig. 3 The kernel density estimation of daily human digital footprint coverage (α) (a); The scatter distribution of daily human digital footprint coverage (α) and daily human digital footprint intensity (β) (b); The kernel density estimation of daily human digital footprint intensity (β) (c); The monthly α histogram (d); The monthly β histogram (e), the legend of d and e are the same as that of b; The β of Sand Island in 2017 and 2018, respectively (f, g); The β of Birds Island in 2017 and 2018, respectively (h, i).
图4 青海湖自然保护区不同保护等级区域8月2-8日人类数字足迹扩张范围(a), α为人类数字足迹覆盖率。8月4日-10日期间平均人类数字足迹扩张强度(b), 人类数字足迹强度增加量为8月4-10日的平均人类数字足迹强度减去人类足迹长期稳定分布区域的年平均人类数字足迹强度。
Fig. 4 The expansion of human digital footprint in different zones from August 2 to August 8 in Qinghai Lake National Nature Reserve with different protection levels (a), α is human digital footprint coverage. The expansion intensity of human digital footprint in different zones from August 4 to August 10 in Qinghai Lake National Nature Reserve with different protection levels (b), the increase human digital footprint intensity (β) is the average β from August 4 to August 10 minus the yearly average β in the long-term stable zone of human footprints.
图5 青海湖保护区草地生物量的人类活动暴露度(ε)及草地生物量。a: 5-9月的ε最大值空间分布; b-f: 分别为5-9月青海湖保护区部分地区的ε; g: 青海湖保护区5-9月平均草地生物量; h: ε最大值所在月份次数统计。
Fig. 5 The human activities exposure of grassland biomass (ε) and grassland biomass in Qinghai Lake National Nature Reserve. a, The spatial distribution of max ε from May to September; b-f, ε in some zones of Qinghai Lake National Nature Reserve from May to September; g, The average ε from May to September in Qinghai Lake National Nature Reserve; h, The number of months of max ε.
5月 May | 6月 June | 7月 July | 8月 August | 9月 September | |
---|---|---|---|---|---|
核心区 Core zone | 0.014 | 0.017 | 0.013 | 0.018 | 0.010 |
缓冲区 Buffer zone | 6.526 | 9.147 | 11.758 | 11.672 | 7.093 |
实验区 Experimental zone | 5.579 | 7.301 | 10.848 | 11.640 | 5.739 |
表1 不同保护区域不同月份的平均草地生物量的人类活动暴露度。表中数值均需 × 10-3。
Table 1 The average human activities exposure of grassland biomass (ε) in different months in different protected zones. All values need to be multiplied by 10-3.
5月 May | 6月 June | 7月 July | 8月 August | 9月 September | |
---|---|---|---|---|---|
核心区 Core zone | 0.014 | 0.017 | 0.013 | 0.018 | 0.010 |
缓冲区 Buffer zone | 6.526 | 9.147 | 11.758 | 11.672 | 7.093 |
实验区 Experimental zone | 5.579 | 7.301 | 10.848 | 11.640 | 5.739 |
[1] | Bebbington AJ, Humphreys BD, Sauls LA, Rogan J, Agrawal S, Gamboa C, Imhof A, Johnson K, Rosa H, Royo A, Toumbourou T, Verdum R (2018) Resource extraction and infrastructure threaten forest cover and community rights. Proceedings of the National Academy of Sciences, USA, 115, 13164-13173. |
[2] | Cao W, Huang L, Xiao T, Wu D (2019) Effects of human activities on the ecosystems of China’s national nature reserves. Acta Ecologica Sinica, 39, 1338-1350. (in Chinese with English abstract) |
[曹巍, 黄麟, 肖桐, 吴丹 (2019) 人类活动对中国国家级自然保护区生态系统的影响. 生态学报, 39, 1338-1350.] | |
[3] |
Di Minin E., Slotow R, Fink C, Bauer H, Packer C (2021). A pan-African spatial assessment of human conflicts with lions and elephants. Nature communications, 12, 2978.
DOI URL |
[4] |
Du YY, Tu WN, Liang FY, Yi JW (2021) Human’s digital footprints on the Qinghai-Tibet Plateau: Variations during festivals and impacts on nature reserves. Journal of Geographical Sciences, 31, 179-194.
DOI URL |
[5] |
Ewers RM, Rodrigues ASL (2008) Estimates of reserve effectiveness are confounded by leakage. Trends in Ecology and Evolution, 23, 113-116.
DOI URL |
[6] |
Gray CL, Hill SLL, Newbold T, Hudson LN, Börger L, Contu S, Hoskins AJ, Ferrier S, Purvis A, Scharlemann JPW (2016) Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 7, 12306.
DOI URL |
[7] | Huang MN, Ma T (2019) Assessing the impacts of China’s road network on landscape fragmentation and protected areas. Journal of Geo-Information Science, 21, 1183-1195. (in Chinese with English abstract) |
[黄梦娜, 马廷 (2019) 中国道路网引起的景观破碎格局及其对保护区的影响. 地球信息科学学报, 21, 1183-1195.]
DOI |
|
[8] | IUCN International Union for Conservation of Nature (2021) Discover the world’s protected areas. http://www.iucn.org/themes/ssc/sis/authority.html. (accessed on 2021-08-10) |
[9] |
Jones KR, Venter O, Fuller RA, Allan JR, Maxwell SL, Negret PJ, Watson JEM (2018) One-third of global protected land is under intense human pressure. Science, 360, 788-791.
DOI URL |
[10] | Li GD, Fang CL, Du YY, Wang ZB, Sun SA (2019) Urgent issues to be addressed in management of Qinghai Lake National Nature Reserve and recommendations for rationalizing system. Bulletin of Chinese Academy of Sciences, 34, 814-817. (in Chinese) |
[李广东, 方创琳, 杜云艳, 王振波, 孙思奥 (2019) 青海湖国家自然保护区管理中亟待解决的紧迫问题及理顺体制的建议. 中国科学院院刊, 34, 814-817.] | |
[11] | Li L, Zhang FP, Feng Q, Wang HW, Wei YF, Li XJ, Nie S, Liu JY (2019) Responses of grassland to climate change and human activities in the area around Qinghai Lake. Chinese Journal of Ecology, 38, 1157-1165. (in Chinese with English abstract) |
[李玲, 张福平, 冯起, 王虎威, 魏永芬, 李肖娟, 聂硕, 刘洁遥 (2019) 环青海湖地区草地对气候变化和人类活动的响应. 生态学杂志, 38, 1157-1165.] | |
[12] |
Li ZH, Xia J, Deng XZ, Yan HM (2021) Multilevel modelling of impacts of human and natural factors on ecosystem services change in an oasis, Northwest China. Resources, Conservation and Recycling, 169, 105474.
DOI URL |
[13] | Liu XM, Fu Z, Wen RH, Jin CP, Wang XF, Wang C, Xiao RL, Hou P (2020) Characteristics of human activities and the spatio-temporal changes of national nature reserves in China. Geographical Research, 39, 2391-2402. (in Chinese with English abstract) |
[刘晓曼, 付卓, 闻瑞红, 靳川平, 王雪峰, 王超, 肖如林, 侯鹏 (2020) 中国国家级自然保护区人类活动及变化特征. 地理研究, 39, 2391-2402.]
DOI |
|
[14] | Lu F, Liu K, Chen J (2014) Research on human mobility in big data era. Journal of Geo-Information Science, 16, 665-672. (in Chinese with English abstract) |
[陆锋, 刘康, 陈洁 (2014) 大数据时代的人类移动性研究. 地球信息科学学报, 16, 665-672.]
DOI |
|
[15] |
Luo CF, Xu CJ, You HY, Jin SH (2013) Analysis on grassland degradation in Qinghai Lake Basin during 2000-2010. Acta Ecologica Sinica, 33, 4450-4459. (in Chinese with English abstract)
DOI URL |
[骆成凤, 许长军, 游浩妍, 靳生洪 (2013) (2013) 2000-2010年青海湖流域草地退化状况时空分析. 生态学报, 33, 4450-4459.] | |
[16] |
Ma BR, Xie YX, Zhang TZ, Zeng WH, Hu GZ (2020) Identification of conflict between wildlife living spaces and human activity spaces and adjustments in/around protected areas under climate change: A case study in the Three-River Source Region. Journal of Environmental Management, 262, 110322.
DOI URL |
[17] | Ma HX, Chen CC, Song YQ, Ye S, Hu YM (2018) Analysis of vegetation cover change and its driving factors over the past ten years in Qinghai Province. Research of Soil and Water Conservation, 25(6), 137-145. (in Chinese with English abstract) |
[马昊翔, 陈长成, 宋英强, 晔沙, 胡月明 (2018) 青海省近10年草地植被覆盖动态变化及其驱动因素分析. 水土保持研究, 25(6), 137-145.] | |
[18] |
Maldonado-Oré EM, Custodio M (2020) Visitor environmental impact on protected natural areas: An evaluation of the Huaytapallana Regional Conservation Area in Peru. Journal of Outdoor Recreation and Tourism, 31, 100298.
DOI URL |
[19] | Martínez-Ramos M, Ortiz-Rodríguez IA, Piñero D, Dirzo R, Sarukhán J (2016) Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proceedings of the National Academy of Sciences, USA, 113, 5323-5328. |
[20] | Pan H, Gu HM, Shi JQ, Wei CJ (2016) Study on changes of vegetation fraction and its driving factors in Qinghai Lake Basin based on RS and GIS. Resource Development & Market, 32, 827-831, 768. (in Chinese with English abstract) |
[潘虹, 顾海敏, 史建桥, 魏楚京 (2016) 基于RS和GIS的青海湖流域植被覆盖度变化与驱动因子研究. 资源开发与市场, 32, 827-831, 768.] | |
[21] |
Shrestha N, Xu XT, Meng JH, Wang ZH (2021) Vulnerabilities of protected lands in the face of climate and human footprint changes. Nature Communications, 12, 1632.
DOI PMID |
[22] |
Song YM, Huang B, He QQ, Chen B, Wei J, Mahmood R (2019) Dynamic assessment of PM2.5 exposure and health risk using remote sensing and geo-spatial big data. Environmental Pollution, 253, 288-296.
DOI URL |
[23] |
Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017) Future threats to biodiversity and pathways to their prevention. Nature, 546, 73-81.
DOI URL |
[24] | Tong LG, Li XM, Huang Z, Zhang J, Tian SZ (2017) Study on risk of population exposure to PM2.5 in Baotou City. Journal of Arid Land Resources and Environment, 31(11), 50-54. (in Chinese with English abstract) |
[同丽嘎, 李雪铭, 黄哲, 张靖, 田深圳 (2017) 包头市人口PM2.5暴露风险研究. 干旱区资源与环境, 31(11), 50-54.] | |
[25] |
Walden-Schreiner C, Leung YF, Tateosian L (2018) Digital footprints: Incorporating crowdsourced geographic infor- mation for protected area management. Applied Geography, 90, 44-54.
DOI URL |
[26] |
Wanghe KY, Guo XL, Hu FX, Ahmad S, Jin XW, Khan TU, Xiao YQ, Luan XF (2020) Spatial coincidence between mining activities and protected areas of giant panda habitat: The geographic overlaps and implications for conservation. Biological Conservation, 247, 108600.
DOI URL |
[27] | Watson JE, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature, 515, 67-73. |
[28] |
Weaver SD, Gahegan M (2007) Constructing, visualizing, and analyzing a digital footprint. Geographical Review, 97, 324-350.
DOI URL |
[29] | Xu WB, Svenning JC, Chen GK, Zhang MG, Huang JH, Chen B, Ordonez A, Ma KP (2019) Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proceedings of the National Academy of Sciences, USA, 116, 26674-26681. |
[30] | Yan Q, Li CG, Chen C, Luo FL (2018) Characteristics of activity space and community differentiation in Changchun: A study using mobile phone signaling data. Human Geography, 33(6), 35-43. (in Chinese with English abstract) |
[闫晴, 李诚固, 陈才, 罗凤龙 (2018) 基于手机信令数据的长春市活动空间特征与社区分异研究. 人文地理, 33(6), 35-43.] | |
[31] | Yi JW, Du YY, Liang FY, Pei T, Ma T, Zhou CH (2019) Anomalies of dwellers’ collective geotagged behaviors in response to rainstorms: A case study of eight cities in China using smartphone location data. Natural Hazards and Earth System Sciences, 19, 2169-2182. |
[32] |
Yi JW, Du YY, Liang FY, Tu WN, Ge Y (2020) Mapping human’s digital footprints on the Tibetan Plateau from multi-source geospatial big data. Science of the Total Environment, 711, 134540.
DOI URL |
[33] | Yi JW, Du YY, Tu WN (2019) Spatiotemporal pattern of population distribution in the Qinghai-Tibet Plateau during the National Day holidays: Based on geospatial big data mining. Journal of Geo-Information Science, 21, 1367-1381. (in Chinese with English abstract) |
[易嘉伟, 杜云艳, 涂文娜 (2019) 基于位置大数据的国庆假期青藏高原人群分布时空变化模式挖掘. 地球信息科学学报, 21, 1367-1381.]
DOI |
|
[34] | Zhang BH (2017) Alpine aboveground biomass dataset for Qinghai Lake Basin (2000-2015). Science Data Bank. |
张炳华 (2017) 2000-2015年青海湖环湖地区草地生物量数据集(V1). 2017. https://datapid.cn/31253.11.sciencedb.399.] (accessed on 2021-11-24) | |
[35] |
Zhang ZP, Xia FQ, Yang DG, Huo JW, Wang GL, Chen HX (2020) Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecological Indicators, 110, 105826.
DOI URL |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[3] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[4] | 所翟, 俞渃茜, 李媛辉, 徐基良. 基于实证分析中国自然保护区地方立法问题检视和优化路径[J]. 生物多样性, 2024, 32(2): 23287-. |
[5] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[6] | 黄小龙, 蒙秉顺, 李海波, 冉伟, 杨伟, 王丞, 谢波, 张旭, 冉景丞, 张明明. 基于红外相机的黔金丝猴及其同域分布物种种间关联[J]. 生物多样性, 2024, 32(2): 23402-. |
[7] | 崔国发. 关于自然保护地整合优化工作中几个关键问题的讨论与建议[J]. 生物多样性, 2023, 31(9): 22447-. |
[8] | 邢超, 林依, 周智强, 赵联军, 蒋仕伟, 林蓁蓁, 徐基良, 詹祥江. 基于DNA条形码技术构建王朗国家级自然保护区陆生脊椎动物遗传资源数据库及物种鉴定[J]. 生物多样性, 2023, 31(7): 22661-. |
[9] | 陈本平, 陈建武, 凌征文, 杨旭, 陈鑫, 李生强, 杨彪. 四川老君山国家级自然保护区林下鸟兽多样性及动态变化数据集[J]. 生物多样性, 2023, 31(5): 22566-. |
[10] | 耿宜佳, 李子圆, 田瑜. 《生物多样性公约》下海洋生物多样性保护的进展、挑战和展望[J]. 生物多样性, 2023, 31(4): 22645-. |
[11] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[12] | 赵梦乔, 陈友, 徐正会, 王戌勃, 赵忠良, 徐文川, 何宗辉, 王文华. 云南哀牢山国家级自然保护区东坡垂直带蚂蚁物种多样性[J]. 生物多样性, 2023, 31(11): 23168-. |
[13] | 胡远芳, 李斌强, 梁丹, 李兴权, 刘兰香, 杨家伟, 罗旭. 人为干扰对白腹锦鸡活动节律的影响[J]. 生物多样性, 2022, 30(8): 21484-. |
[14] | 李海萍, 徐竹青, 龙志航. 大兴安岭地区重点保护和珍稀动物保护空缺分析[J]. 生物多样性, 2022, 30(2): 21294-. |
[15] | 秦乐, 朱彦鹏, 任月恒, 李博炎, 付梦娣, 李俊生. 青藏高原国家级自然保护区管理能力差异及其对保护成效的影响[J]. 生物多样性, 2022, 30(11): 22419-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn