生物多样性 ›› 2021, Vol. 29 ›› Issue (7): 995-1001. DOI: 10.17520/biods.2020449
• 综述 • 上一篇
收稿日期:
2020-12-05
接受日期:
2021-03-09
出版日期:
2021-07-20
发布日期:
2021-05-28
通讯作者:
* E-mail: yuyangjcl@126.com; xiangzf@csuft.edu.cn
基金资助:
Qin Wang1, Yuan Chen2, Yang Yu1*(), Zuofu Xiang1*()
Received:
2020-12-05
Accepted:
2021-03-09
Online:
2021-07-20
Published:
2021-05-28
Contact:
* E-mail: yuyangjcl@126.com; xiangzf@csuft.edu.cn
摘要:
孢子植物物种多样性丰富, 是自然生态系统的重要组成部分。孢子植物的传播通常被认为主要依靠风、水、弹力等非生物媒介, 而动物的作用往往被忽略。本文主要概述了: (1)孢子植物对动物传播的适应: 一方面孢子植物可为动物提供食物、庇护所、繁殖场所等, 另一方面孢子植物也可产生视觉、嗅觉等方面的线索来吸引动物, 从而促进动物传播其繁殖体。(2)动物对孢子植物的传播模式: 包括体内传播(消化道和组织寄生)和体外传播两种, 这些模式都能对孢子植物繁殖体进行有效传播。由于动物间形态或生活习性的不同, 以致传播距离存在差异, 最短距离为0.1 cm, 最长距离可从北半球至南半球。(3)动物对孢子植物传播的生态与进化意义; 由于某些孢子植物繁殖体的结构特点或萌发的需求, 以致其繁殖体只能通过动物的传播才能得以定殖, 因此动物与孢子植物之间存在密不可分的关系。目前, 动物对孢子植物的传播研究主要是描述性的内容以及研究单方面的传播途径, 建议在今后的研究中考虑动物对孢子植物传播的有效性以及多途径同时传播对孢子植物定殖的影响, 同时应更加关注孢子植物和动物互惠关系的形成、维持机制及将来的进化趋势。
王琴, 陈远, 禹洋, 向左甫 (2021) 动物对孢子植物的传播模式及进化意义. 生物多样性, 29, 995-1001. DOI: 10.17520/biods.2020449.
Qin Wang, Yuan Chen, Yang Yu, Zuofu Xiang (2021) Dispersal of spore plants by animals: Patterns and evolutionary significance. Biodiversity Science, 29, 995-1001. DOI: 10.17520/biods.2020449.
[1] |
Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel-Jones NL, Billen J, Boomsma JJ, Hughes DP (2009) The life of a dead ant: The expression of an adaptive extended phenotype. The American Naturalist, 174, 424-433.
DOI PMID |
[2] |
Arosa ML, Ramos JA, Quintanilla LG, Brown D (2010) First report of fern (Culcita macrocarpa) spore consumption by a small mammal (Apodemus sylvaticus). Mammalian Biology, 75, 115-121.
DOI URL |
[3] | Arosa ML, Ramos JA, Valkenburg T, Ceia R, Laborda H, Quintanilla LG, Heleno R (2009) Fern feeding ecology of the Azores bullfinch Pyrrhula murina: The selection of fern species and the influence of nutritional composition in fern choice. Ardeola, 56, 71-84. |
[4] |
Bailey RH, James PW (1979) Birds and the dispersal of lichen propagules. The Lichenologist, 11, 105-106.
DOI URL |
[5] |
Barbé M, Chavel ÉE, Fenton NJ, Imbeau L, Mazerolle MJ, Drapeau P, Bergeron Y (2016) Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest. Ecoscience, 23, 67-76.
DOI URL |
[6] |
Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, Nilsson MC, Rasmussen U (2013) Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytologist, 200, 54-60.
DOI URL |
[7] |
Bisang I, Hedenäs L (2015) Mass-occurrence of springtails on Tortula cernua (Huebener) Lindb.: A field-observation of possible animal-mediated fertilization. Journal of Bryology, 37, 339-341.
DOI URL |
[8] |
Boch S, Berlinger M, Prati D, Fischer M (2016) Is fern endozoochory widespread among fern-eating herbivores? Plant Ecology, 217, 13-20.
DOI URL |
[9] |
Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS ONE, 6, e18770.
DOI URL |
[10] |
Bråthen KA, González VT, Iversen M, Killengreen S, Ravolainen VT, Ims RA, Yoccoz NG (2007) Endozoochory varies with ecological scale and context. Ecography, 30, 308-320.
DOI URL |
[11] |
Chen G, Zhang RR, Liu Y, Sun WB (2014) Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects. Journal of Chemical Ecology, 40, 893-899.
DOI PMID |
[12] | Chmielewski MW, Eppley SM (2019) Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proceedings of the Royal Society B: Biological Sciences, 286, 20182253. |
[13] |
Clark KL, Nadkarni NM, Gholz HL (2005) Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica, 37, 328-336.
DOI URL |
[14] |
Correia M, Heleno R, da Silva LP, Costa JM, Rodríguez-Echeverría S (2019) First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytologist, 222, 1054-1060.
DOI |
[15] |
da Silva LP, Pereira Coutinho A, Heleno RH, Tenreiro PQ, Ramos JA (2016) Dispersal of fungi spores by non-specialized flower-visiting birds. Journal of Avian Biology, 47, 438-442.
DOI URL |
[16] |
Davidson AJ, Harborne JB, Longton RE (1990) The acceptability of mosses as food for generalist herbivores, slugs in the Arionidae. Botanical Journal of the Linnean Society, 104, 99-113.
DOI URL |
[17] |
Deane-Coe KK, Stanton D (2017) Functional ecology of cryptogams: Scaling from bryophyte, lichen, and soil crust traits to ecosystem processes. New Phytologist, 213, 993-995.
DOI URL |
[18] |
DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson MC (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia, 152, 121-130.
DOI URL |
[19] | Fischer OA, Vícha R (2003) Blowflies (Diptera, Calliphoridae) attracted by Phallus impudicus (Phallaceae) and Stapelia grandiflora (Asclepiadaceae). Biologia-Section Zoology, 58, 995-998. |
[20] |
Gracia ES, de Bekker C, Hanks EM, Hughes DP (2018) Within the fortress: A specialized parasite is not discriminated against in a social insect society. PLoS ONE, 13, e0193536.
DOI URL |
[21] |
Gressitt JL, Samuelson GA, Vitt DH (1968) Moss growing on living Papuan moss-forest weevils. Nature, 217, 765-767.
DOI URL |
[22] |
Haines WP, Renwick JAA (2009) Bryophytes as food: Comparative consumption and utilization of mosses by a generalist insect herbivore. Entomologia Experimentalis et Applicata, 133, 296-306.
DOI URL |
[23] |
Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biology and Fertility of Soils, 18, 115-118.
DOI URL |
[24] | Heinken T (2000) Dispersal of plants by a dog in a deciduous forest. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 122, 449-467. |
[25] |
Heinken T, Lees R, Raudnitschka D, Runge S (2001) Epizoochorous dispersal of bryophyte stem fragments by roe deer (Capreolus capreolus) and wild boar (Sus scrofa). Journal of Bryology, 23, 293-300.
DOI URL |
[26] |
Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecology, 11, 13.
DOI PMID |
[27] |
Johnson SD, Jürgens A (2010) Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. South African Journal of Botany, 76, 796-807.
DOI URL |
[28] |
Kaiser R (2006) Flowers and fungi use scents to mimic each other. Science, 311, 806-807.
PMID |
[29] |
Kimmerer RW, Young CC (1995) The role of slugs in dispersal of the asexual propagules of Dicranum flagellare. The Bryologist, 98, 149-153.
DOI URL |
[30] |
Kimmerer RW, Young CC (1996) Effect of gap size and regeneration niche on species coexistence in bryophyte communities. Bulletin of the Torrey Botanical Club, 123, 16-24.
DOI URL |
[31] |
Kiviniemi K (1996) A study of adhesive seed dispersal of three species under natural conditions. Acta Botanica Neerlandica, 45, 73-83.
DOI URL |
[32] |
Lewis LR, Behling E, Gousse H, Qian E, Elphick CS, Lamarre JF, Bêty J, Liebezeit J, Rozzi R, Goffinet B (2014) First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. PeerJ, 2, e424.
DOI URL |
[33] | Lim TM (1977) Production, germination and dispersal of basidiospores of Ganoderma pseudoferreum on Hevea. Journal of the Rubber Research Institute of Malaysia, 25, 93-99. |
[34] |
Loreto RG, Araújo JPM, Kepler RM, Fleming KR, Moreau CS, Hughes DP (2018) Evidence for convergent evolution of host parasitic manipulation in response to environmental conditions. Evolution, 72, 2144-2155.
DOI URL |
[35] |
Loreto RG, Hughes DP (2016) Disease dynamics in ants: A critical review of the ecological relevance of using generalist fungi to study infections in insect societies. Advances in Genetics, 94, 287-306.
DOI PMID |
[36] | Luo JX (1977) What are bryophytes. The Plant Journal, (4), 38-40. (in Chinese) |
[ 罗健馨 (1977) 什么是苔藓植物. 植物杂志, (4), 38-40.] | |
[37] | Maciel-Silva AS, Pôrto KC (2014) Reproduction in bryophytes. In: Reproductive Biology of Plants (eds Ramawat KG, Mérillon JM, Shivanna KR), pp. 57-84. CRC Press, Boca Raton. |
[38] |
Marino P, Raguso R, Goffinet B (2009) The ecology and evolution of fly dispersed dung mosses (Family Splachnaceae): Manipulating insect behaviour through odour and visual cues. Symbiosis, 47, 61-76.
DOI URL |
[39] |
Mishler BD, Newton AE (1988) Influences of mature plants and desiccation on germination of spores and gametophyticfragments of Tortula. Journal of Bryology, 15, 327-342.
DOI URL |
[40] |
Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature, 418, 409-413.
DOI URL |
[41] |
Nervo MH, Windisch PG, Seibert S (2011) Herbivory on Pecluma pectinatiformis (L.) Price (polypodiopsida) by caterpillars of Argyrosticta Hübner (Lepidoptera)—A possible case of mimicry? American Fern Journal, 101, 317-318.
DOI URL |
[42] |
Pauliuk F, Müller J, Heinken T (2011) Bryophyte dispersal by sheep on dry grassland. Nova Hedwigia, 92, 327-341.
DOI URL |
[43] | Ramsay HP, Cairns A (2004) Habitat, distribution and the phytogeographical affinities of mosses in the Wet Tropics bioregion, north-east Queensland, Australia. Cunninghamia, 8, 371-408. |
[44] |
Rose JP, Dassler CL (2017) Spore production and dispersal in two temperate fern species, with an overview of the evolution of spore production in ferns. American Fern Journal, 107, 136-155.
DOI URL |
[45] |
Roy BA (1994) The use and abuse of pollinators by fungi. Trends in Ecology & Evolution, 9, 335-339.
DOI URL |
[46] |
Rudolphi J (2009) Ant-mediated dispersal of asexual moss propagules. The Bryologist, 112, 73-79.
DOI URL |
[47] |
Sakolrak B, Blatrix R, Sangwanit U, Kobmoo N (2018) Experimental infection of the ant Polyrhachis furcata with Ophiocordyceps reveals specificity of behavioural manipulation. Fungal Ecology, 33, 122-124.
DOI URL |
[48] |
Salzmann CC, Brown A, Schiestl FP (2006) Floral scent emission and pollination syndromes: Evolutionary changes from food to sexual deception. International Journal of Plant Sciences, 167, 1197-1204.
DOI URL |
[49] |
Schupp EW, Jordano P, Gómez JM (2017) A general framework for effectiveness concepts in mutualisms. Ecology Letters, 20, 577-590.
DOI URL |
[50] | Stephens RB, Rowe RJ (2020) The underappreciated role of rodent generalists in fungal spore dispersal networks. Ecology, 101, e02972. |
[51] |
Stubbs CS (1995) Dispersal of soredia by the oribatid mite, Humerobates arborea. Mycologia, 87, 454-458.
DOI URL |
[52] |
Thomas F, Poulin R, Brodeur J (2010) Host manipulation by parasites: A multidimensional phenomenon. Oikos, 119, 1217-1223.
DOI URL |
[53] |
Tuno N (1998) Spore dispersal of Dictyophora fungi (Phallaceae) by flies. Ecological Research, 13, 7-15.
DOI URL |
[54] |
Tuno N (1999) Insect feeding on spores of a bracket fungus, Elfvingia applanata (Pers.) Karst. (Ganodermataceae, Aphyllophorales). Ecological Research, 14, 97-103.
DOI URL |
[55] |
van Tooren BF, During HJ (1988) Viable plant diaspores in the guts of earthworms. Acta Botanica Neerlandica, 37, 181-185.
DOI URL |
[56] |
Wilkinson DM, Lovas-Kiss A, Callaghan DA, Green AJ (2017) Endozoochory of large bryophyte fragments by waterbirds. Cryptogamie, Bryologie, 38, 223-228.
DOI URL |
[57] | Xiang ZF (2020) A review on the socioecology of snub-nosed monkeys. Chinese Bulletin of Life Sciences, 32, 692-703. (in Chinese with English abstract) |
[ 向左甫 (2020) 金丝猴社会生态学研究进展. 生命科学, 32, 692-703.] |
[1] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[2] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[3] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[4] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[5] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[6] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[7] | 苏荣菲, 陈睿山, 郭晓娜. 城市社区更新中生物多样性的保护策略: 以上海市长宁区生境花园为例[J]. 生物多样性, 2023, 31(7): 23118-. |
[8] | 耿宜佳, 李子圆, 田瑜. 《生物多样性公约》下海洋生物多样性保护的进展、挑战和展望[J]. 生物多样性, 2023, 31(4): 22645-. |
[9] | 马海港, 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[10] | 李爽, 朱彦鹏, 曹萌, 李俊生. 我国生物多样性保护标准体系现状、问题与建议[J]. 生物多样性, 2022, 30(11): 22117-. |
[11] | 张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 2022, 30(10): 22609-. |
[12] | 戴尊, 陈星, 张建行, 朱毛洁, 宋坤, 邢诗晨, 涂淑雯, 邹璐, 雷祖培, 李宏庆, 王健. 浙江乌岩岭国家级自然保护区叶附生苔类及附主植物多样性[J]. 生物多样性, 2022, 30(1): 21229-. |
[13] | 高梅香, 刘启龙, 朱家祺, 赵博宇, 杜嘉, 吴东辉. 中国农田土壤动物长期监测样地科学调查监测的实施方法[J]. 生物多样性, 2022, 30(1): 21265-. |
[14] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[15] | 万霞, 张丽兵. 2020年发表的全球维管植物新种[J]. 生物多样性, 2021, 29(8): 1003-1010. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn