生物多样性 ›› 2020, Vol. 28 ›› Issue (11): 1405-1416.DOI: 10.17520/biods.2020262
收稿日期:
2020-06-30
接受日期:
2020-10-24
出版日期:
2020-11-20
发布日期:
2020-10-30
通讯作者:
骆亦其
作者简介:
* E-mail: Yiqi.Luo@nau.edu基金资助:
Received:
2020-06-30
Accepted:
2020-10-24
Online:
2020-11-20
Published:
2020-10-30
Contact:
Yiqi Luo
摘要:
生态系统维持物质与能量的动态平衡是地球系统孕育与维持生物多样性的重要基础。自工业革命以来, 人类活动导致陆地生态系统的碳循环转变为动态非平衡,进而使陆地生态系统的结构与功能出现许多难以预测的变化动态。本文阐释了陆地生态系统碳循环的动态非平衡假说。该假说构建于陆地碳循环内部过程的四点基本特征和五类外部驱动因素。基于这些内部特征与外部因素, 本文归纳了陆地生态系统碳循环动态非平衡在不同时间与空间尺度的表达现象, 并从观测、实验与模型的角度讨论了其检测方法。陆地生态系统碳循环的动态非平衡假说不仅有助于我们理解复杂的陆地碳循环现象, 也为预测未来陆地碳汇动态提供了新的理论框架。
骆亦其, 夏建阳 (2020) 陆地碳循环的动态非平衡假说. 生物多样性, 28, 1405-1416. DOI: 10.17520/biods.2020262.
Yiqi Luo, Jianyang Xia (2020) A dynamic disequilibrium hypothesis for terrestrial carbon cycle. Biodiversity Science, 28, 1405-1416. DOI: 10.17520/biods.2020262.
图1 陆地碳循环动态非平衡假说中包含的外部驱动因素、内部碳循环过程及其在不同时空尺度上的表达现象。图片中的公式为正文中的公式(1), 其变量解释见正文。
Fig. 1 External forcing, internal processes, and complex phenomena of dynamic disequilibrium hypothesis for terrestrial carbon cycle. The equation in the figure is cited from Luo et al (2003) and the details of equation can be found in the text.
[1] | Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340. |
[2] | Baldocchi DD (2020) How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 26, 242-260. |
[3] | Ballantyne A, Smith W, Anderegg W, Kauppi P, Sarmiento J, Tans P, Shevliakova E, Pan YD, Poulter B, Anav A, Friedlingstein P, Houghton R, Running S (2017) Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 7, 148-152. |
[4] |
Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488, 70-72.
DOI URL PMID |
[5] |
Bastos A, Ciais P, Friedlingstein P, Sitch S, Pongratz J, Fan L, Wigneron JP, Weber U, Reichstein M, Fu Z, Anthoni P, Arneth A, Haverd V, Jain AK, Joetzjer E, Knauer J, Lienert S, Loughran T, McGuire PC, Tian H, Viovy N, Zaehle S (2020) Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances, 6, eaba2724.
DOI URL PMID |
[6] | Brando PM, Paolucci L, Ummenhofer CC, Ordway EM, Hartmann H, Cattau ME, Rattis L, Medjibe V, Coe MT, Balch J (2019) Droughts, wildfires, and forest carbon cycling: A pantropical synthesis. Annual Review of Earth and Planetary Sciences, 47, 555-581. |
[7] | Burke IC, Kaye JP, Bird SP, Hall SA, McCulley RL, Sommerville GL (2003) Evaluating and testing models of terrestrial biogeochemistry: The role of temperature in controlling decomposition. In: Models in Ecosystem Science (Canham CD, Cole JJ, Lauenroth WK), pp. 225-253. Princeton University Press, Princeton, New Jersey. |
[8] | Cai A, Liang G, Zhang X, Zhang W, Li L, Rui Y, Xu M, Luo Y (2018) Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time. Science of the Total Environment, 636, 699-708. |
[9] |
Chambers JQ, Fisher JI, Zeng H, Chapman EL, Baker DB, Hurtt GC (2007) Hurricane Katrina’s carbon footprint on US Gulf Coast forests. Science, 318, 1107-1107.
DOI URL PMID |
[10] | Ciais P, Tan J, Wang X, Roedenbeck C, Chevallier F, Piao SL, Moriarty R, Broquet G, Le Quéré C, Canadell JG, Peng SH, Poulter B, Liu Z, Tans P (2019) Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 568, 221-225. |
[11] | Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137-156. |
[12] | Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7, 357-373. |
[13] | Donohue I, Hillebrand H, Montoya JM, Petchey OL, Pimm SL, Fowler MS, Healy K, Jackson AL, Lurgi M, McClean D, O’Connor NE, O’Gorman EJ, Yang Q (2016) Navigating the complexity of ecological stability. Ecology Letters, 19, 1172-1185. |
[14] | Du L, Mikle N, Zou ZH, Huang YY, Shi Z, Jiang LF, McCarthy HR, Liang JY, Luo YQ (2018) Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency. Science of the Total Environment, 628, 611-620. |
[15] |
Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
[16] | Fernández-Martínez M, Sardans J, Chevallier F, Ciais P, Obersteiner M, Vicca S, Canadell JG, Bastos A, Friedlingstein P, Sitch S, Piao SL, Janssens IA, Peñuelas J (2019) Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change, 9, 73-79. |
[17] |
Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 35, 837-843.
DOI URL |
[18] |
Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M, Wang H, Mäkelä A, Rebel KT, Meron E, Schymanski SJ, Rovenskaya E, Stocker BD, Zaehle S, Manzoni S, van Oijen M, Wright IJ, Ciais P, van Bodegom PM, Peñuelas J, Hofhansl F, Terrer C, Soudzilovskaia NA, Midgley G, Prentice IC (2020) Organizing principles for vegetation dynamics. Nature Plants, 6, 444-453.
URL PMID |
[19] | Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ, Tissue DT, von Caemmerer S (2013) Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century. New Phytologist, 197, 1077-1094. |
[20] | Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Le Quéré C, Bakker DCE, Canadell JG, Ciais P, Jackson RB, Anthoni P, Barbero L, Bastos A, Bastrikov V, Becker M, Bopp L, Buitenhuis E, Chandra N, Chevallier F, Chini LP, Currie KI, Feely RA, Gehlen M, Gilfillan D, Gkritzalis T, Goll DS, Gruber N, Gutekunst S, Harris I, Haverd V, Houghton RA, Hurtt G, Ilyina T, Jain AK, Joetzjer E, Kaplan JO, Kato E, Goldewijk KK, Korsbakken JI, Landschützer P, Lauvset S, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Marland G, McGuire PC, Melton JR, Metzl N, Munro DR, Nabel JEMS, Nakaoka S, Neill C, Omar AM, Ono T, Peregon A, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Séférian R, Schwinger J, Smith N, Tans PP, Tian HQ, Tilbrook B, Tubiello FN, Van der Werf GR, Wiltshire AJ, Zaehle S (2019) Global Carbon Budget 2019. Earth System Science Data, 11, 1783-1838. |
[21] |
Grace J, Mitchard E, Gloor E (2014) Perturbations in the carbon budget of the tropics. Global Change Biology, 20, 3238-3255.
DOI URL PMID |
[22] | Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenko S, Romanovsky V, Wickland KP, French N, Waldrop M, Bourgeau-Chavez L, Striegl RG (2011) Vulnerability of high-latitude soil organic carbon in north America to disturbance. Journal of Geophysical Research Biogeosciences, 116, G00K06. |
[23] | Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G, Lai Y-C, Morozov A, Petrovskii S, Scranton K, Zeeman ML (2018) Transient phenomena in ecology. Science, 361, 990. |
[24] |
Higgins SI, Scheiter S (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature, 488, 209-212.
DOI URL PMID |
[25] | Holling CS (1959) Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91, 385-398. |
[26] | Holling CS (1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1-23. |
[27] | Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142. |
[28] | Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. Journal of Geophysical Research: Biogeosciences, 115, G04002. |
[29] |
Hu MJ, Wan SQ (2019) Effects of fire and nitrogen addition on photosynthesis and growth of three dominant understory plant species in a temperate forest. Journal of Plant Ecology, 12, 759-768.
DOI URL |
[30] | Huang K, Xia J (2019) High ecosystem stability of evergreen broadleaf forests under severe droughts. Global Change Biology, 25, 3494-3503. |
[31] | Huang K, Xia JY, Wang YP, Ahlström A, Chen JQ, Cook RB, Cui EQ, Fang YY, Fisher JB, Huntzinger DN, Li Z, Michalak AM, Qiao Y, Schaefer K, Schwalm C, Wang J, Wei YX, Xu XN, Yan LM, Bian CY, Luo YQ (2018) Enhanced peak growth of global vegetation and its key mechanisms. Nature Ecology & Evolution, 2, 1897-1905. |
[32] |
Humphrey V, Zscheischler J, Ciais P, Gudmundsson L, Sitch S, Seneviratne SI (2018) Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature, 560, 628-631.
DOI URL PMID |
[33] |
Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo Q, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, van der Putten WH, van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577.
DOI URL PMID |
[34] | Johnson CM, Zarin DJ, Johnson AH (2000) Post-disturbance aboveground biomass accumulation in global secondary forests. Ecology, 81, 1395-1401. |
[35] | Jones CD, Arora V, Friedlingstein P, Bopp L, Brovkin V, Dunne J, Graven H, Hoffman F, Ilyina T, John JG, Jung M, Kawamiya M, Koven C, Pongratz J, Raddatz T, Randerson JT, Zaehle S (2016) C4MIP—The coupled climate-carbon cycle model intercomparison project: Experimental protocol for CMIP6. Geoscientific Model Development, 9, 2853-2880. |
[36] |
Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S, Ahlström A, Arneth A, Camps-Valls G, Ciais P, Friedlingstein P, Gans F, Ichii K, Jain AK, Kato E, Papale D, Poulter B, Raduly B, Rödenbeck C, Tramontana G, Viovy N, Wang YP, Weber U, Zaehle S, Zeng N (2017) Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516-520.
DOI URL PMID |
[37] | Jung M, Schwalm C, Migliavacca M, Walther S, Camps-Valls G, Koirala S, Anthoni P, Besnard S, Bodesheim P, Carvalhais N, Chevallier F, Gans F, Goll DS, Haverd V, Köhler P, Ichii K, Jain AK, Liu JZ, Lombardozzi D, Nabel JEMS, Nelson JA, O’Sullivan M, Pallandt M, Papale D, Peters W, Pongratz J, Rödenbeck C, Sitch S, Tramontana G, Walker A, Weber U, Reichstein M (2020) Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17, 1343-1365. |
[38] | Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences, USA, 110, 13055-13060. |
[39] |
Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, Dukes JS, Fraser LH, Griffin‐Nolan RJ, Hoover DL, Jentsch A, Loik ME, Phillips RP, Post AK, Sala OE, Slette IJ, Yahdjian L, Smith MD (2017) Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years. Global Change Biology, 23, 1774-1782.
DOI URL PMID |
[40] | Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987-990. |
[41] | Lader R, Walsh JE, Bhatt US, Bieniek PA (2017) Projections of twenty-first-century climate extremes for Alaska via dynamical downscaling and quantile mapping. Journal of Applied Meteorology & Climatology, 56, 2393-2409. |
[42] | Lawrence DM, Fisher RA, Koven CD, Oleson KW, Swenson SC, Bonan G, Collier N, Ghimire B, van Kampenhout L, Kennedy D, Kluzek E, Lawrence PJ, Li F, Li H, Lombardozzi D, Riley W, Sacks WJ, Shi M, Vertenstein M, Wieder WR, Xu C, Ali AA, Badger AM, Bisht G, van den Broeke M, Brunke MA, Burns SP, Buzen J, Clark M, Craig A, Dahlin K, Drewniak B, Fisher JB, Flanner M, Fox AM, Gentine P, Hoffman F, Keppel-Aleks G, Knox R, Kumar S, Lenaerts J, Leung LR, Lipscomb WH, Lu Y, Pandey A, Pelletier JD, Perket J, Randerson JT, Ricciuto DM, Sanderson BM, Slater A, Subin ZM, Tang J, Thomas RQ, Martin MV, Zeng X (2020) The Community Land Model Version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245-4287. |
[43] |
Liang J, Zhou Z, Huo C, Shi Z, Cole JR, Huang L, Konstantinidis KT, Li X, Liu B, Luo Z, Penton CR, Schuur EAG, Tiedje JM, Wang Y-P, Wu L, Xia J, Zhou J, Luo Y (2018) More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications, 9, 3175.
URL PMID |
[44] | Liu X, Wan S, Su B, Hui D, Luo Y (2002) Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240, 213-223. |
[45] |
Luo YQ, Keenan TF, Smith M (2015) Predictability of the terrestrial carbon cycle. Global Change Biology, 21, 1737-1751.
URL PMID |
[46] | Luo YQ, Shi Z, Lu XJ, Xia JY, Liang JY, Jiang J, Wang Y, Smith MJ, Jiang LF, Ahlström A, Chen B, Hararuk O, Hastings A, Hoffman F, Medlyn B, Niu SL, Rasmussen M, Todd-Brown K, Wang YP (2017) Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications. Biogeosciences, 14, 145-161. |
[47] |
Luo YQ, Weng ES (2011) Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends in Ecology & Evolution, 26, 96-104.
DOI URL PMID |
[48] | Luo YQ, White LW, Canadell JG, DeLucia EH, Ellsworth DS, Finzi A, Lichter J, Schlesinger WH (2003) Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach. Global Biogeochemical Cycles, 17, 1021. |
[49] | Lyapunov AM (1992) The general problem of the stability of motion. International Journal of Control, 55, 531-534. |
[50] | Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EAG, Shaver GR, Verbyla DL (2011) Carbon loss from an unprecedented Arctic tundra wildfire. Nature, 475, 489-492. |
[51] | Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends in Ecology & Evolution, 13, 195-198. |
[52] |
Matamala R, Jastrow JD, Miller RM, Garten CT (2008) Temporal changes in C and N stocks of restored prairie: Implications for C sequestration strategies. Ecological Applications, 18, 1470-1488.
DOI URL PMID |
[53] |
McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Slark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, Ogle K, Poulter B, Pugh TAM, Seidl R, Turner MG, Uriarte M, Walker AP, Xu C (2020) Pervasive shifts in forest dynamics in a changing world. Science, 368, eaaz9463.
DOI URL PMID |
[54] |
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
DOI URL PMID |
[55] | Morozov A, Abbott K, Cuddington K, Francis T, Gellner G, Hastings A, Lai Y-C, Petrovskii S, Scranton K, Zeeman ML (2020) Long transients in ecology: Theory and applications. Physics of Life Reviews, 32, 1-40. |
[56] |
Odum EP (1969) The strategy of ecosystem development. Science, 164, 262-270.
URL PMID |
[57] | Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173-1179. |
[58] | Piao SL, Wang XH, Park T, Chen C, Lian X, He Y, Bjerke JW, Chen AP, Ciais P, Tømmervik H, Nemani RR, Myneni RB (2020) Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1, 14-27. |
[59] | Pires APF, Srivastava DS, Farjalla VF (2018) Is biodiversity able to buffer ecosystems from climate change? What we know and what we don’t. BioScience, 68, 273-280. |
[60] | Qi WL, Dubayah RO (2016) Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sensing of Environment, 187, 253-266. |
[61] |
Rasmussen M, Hastings A, Smith MJ, Agusto FB, Chen-Charpentier BM, Hoffman FM, Jiang J, Todd-Brown KEO, Wang Y, Wang Y-P, Luo Y (2016) Transit times and mean ages for nonautonomous and autonomous compartmental systems. Journal of Mathematical Biology, 73, 1379-1398.
DOI URL PMID |
[62] |
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature, 500, 287-295.
DOI URL PMID |
[63] | Resco de Dios V(2020) Forest succession, alternative states, and fire-vegetation feedbacks. In: Plant-Fire Interactions: Managing Forest Ecosystems, Vol. 36 (eds von Gadow K, Pukkala T, Tomé M). Springer, Cham. |
[64] | Rödenbeck C, Zaehle S, Keeling R, Heimann M (2018) How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences, 15, 2481-2498. |
[65] | Running SW (2008) Ecosystem disturbance, carbon, and climate. Science, 321, 652-653. |
[66] |
Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature, 413, 591-596.
DOI URL PMID |
[67] |
Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature, 520, 171-179.
DOI URL PMID |
[68] | Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559. |
[69] |
Silver WL, Miya RK (2001) Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia, 129, 407-419.
DOI URL PMID |
[70] | Shi Z, Allison SD, He Y, Levine PA, Hoyt AM, BeeM-Miller J, Zhu Q, Wieder WR, Trumbore S, Randerson JT (2020) The age distribution of global soil carbon inferred from radiocarbon measurements. Nature Geoscience, 13, 555-559. |
[71] |
Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, Luo YQ, Guo DL, Langley JA, Zscheischler J, Dukes JS, Tang JW, Chen JQ, Hofmockel KS, Kueppers LM, Rustad L, Liu LL, Smith MD, Templer PH, Thomas RQ, Norby RJ, Phillips RP, Niu SL, Fatichi S, Wang YP, Shao PS, Han HY, Wang DD, Lei LJ, Wang J, Li XN, Zhang Q, Li XM, Su FL, Liu B, Yang F, Ma G, Li GY, Liu YC, Liu YZ, Yang ZL, Zhang KS, Miao Y, Hu MJ, Yan C, Zhang A, Zhong MX, Hui Y, Li Y, Zheng MM (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320.
DOI URL PMID |
[72] |
Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science, 334, 230-232.
DOI URL PMID |
[73] |
Staver AC, Levin SA (2012) Integrating theoretical climate and fire effects on savanna and forest systems. The American Naturalist, 180, 211-224.
DOI URL PMID |
[74] |
Tagesson T, Schurgers G, Horion S, Ciais P, Tian F, Brandt M, Ahlström A, Wigneron J-P, Ardö J, Olin S, Fan L, Wu Z, Fensholt R (2020) Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nature Ecology & Evolution, 4, 202-209.
DOI URL PMID |
[75] | Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature, 389, 170-173. |
[76] |
Trumbore S (2009) Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences, 37, 47-66.
DOI URL |
[77] |
Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EAG, Grosse G, Kuhry P, Hugelius G, Koven C, Lawrence DM, Gibson C, Sannel ABK, McGuire AD (2020) Carbon release through abrupt permafrost thaw. Nature Geoscience, 13, 138-143.
DOI URL |
[78] |
Vanderwel MC, Coomes DA, Purves DW (2013) Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States. Global Change Biology, 19, 1504-1517.
DOI URL |
[79] | Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton. |
[80] |
Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, Goetz S, Johnstone JF, Potter S, Rogers BM, Schuur EAG, Turetsky MR, Mack MC (2019) Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572, 520-523.
DOI URL PMID |
[81] | Wang YP, Chen BC, Wieder WR, Leite M, Medlyn BE, Rasmussen M, Smith MJ, Agusto FB, Hoffman F, Luo YQ (2014) Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition. Biogeosciences, 11, 1817-1831. |
[82] | Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems, 6, 129-143. |
[83] | Weng ES, Luo YQ, Wang WL, Wang H, Hayes DJ, McGuire AD, Hastings A, Schimel DS (2012) Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model. Journal of Geophysical Research: Biogeosciences, 117, G03014. |
[84] | Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 3, 909-912. |
[85] | Williams CA, Collatz GJ, Masek J, Goward SN (2012) Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles, 26, GB1005. |
[86] |
Xia J, Luo Y, Wang YP, Hararuk O (2013) Traceable components of terrestrial carbon storage capacity in biogeochemical models. Global Change Biology, 19, 2104-2116.
DOI URL PMID |
[87] | Xia J, Wang J, Niu S (2020) Research challenges and opportunities for using big data in global change biology. Global Change Biology, 26, 6040-6061. |
[88] | Xu X, Shi Z, Li D, Ray A, Ruan H, Craine JM, Liang J, Zhou J, Luo Y (2016) Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma, 262, 235-242. |
[89] | Yang YH, Luo YQ, Finzi AC (2011) Carbon and nitrogen dynamics during forest stand development: A global synthesis. New Phytologist, 190, 977-989. |
[90] | Yu K, Smith WK, Trugman AT, Condit R, Hubbell SP, Sardans J, Peng CH, Zhu K, Peñuelas J, Cailleret M, Levanic T, Gessler A, Schaub M, Ferretti M, Anderegg WRL (2019) Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proceedings of the National Academy of Sciences, USA, 116, 24662-24667. |
[91] | Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008) Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93. |
[92] |
Zhu K, Zhang J, Niu S, Chu C, Luo Y (2018) Limits to growth of forest biomass carbon sink under climate change. Nature Communications, 9, 2709.
DOI URL PMID |
[93] | Zhu ZC, Piao SL, Myneni RB, Huang MT, Zeng ZZ, Canadell JC, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao CX, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu YW, Liu RG, Mao JF, Pan YZ, Peng SS, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang XH, Wang YP, Xiao ZQ, Yang H, Zaehle S, Zeng N (2016) Greening of the Earth and its drivers. Nature Climate Change, 6, 791-795. |
[1] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[2] | 吴运佳, 程芸, 袁磊, 张诗, 张烁, 刘少创. 库木塔格沙漠地区野骆驼活动节律与家域特征[J]. 生物多样性, 2021, 29(9): 1206-1214. |
[3] | 李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9): 1186-1197. |
[4] | 马星, 王浩, 余蔚, 杜勇, 梁健超, 胡慧建, 邱胜荣, 刘璐. 基于MaxEnt模型分析广东省鸟类多样性热点分布及保护空缺[J]. 生物多样性, 2021, 29(8): 1097-1107. |
[5] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[6] | 邹博研, 罗概, 朱博伟, 冉江洪, 房超. 川西高原三种雉类与其捕食者赤狐的空间关系[J]. 生物多样性, 2021, 29(7): 918-926. |
[7] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
[8] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[9] | 曹明, 李俊生, 王伟, 夏聚一, 冯春婷, 付刚, 黄文婕, 刘方正. 基于InVEST与倾向评分匹配模型评估秦岭国家级自然保护区水源涵养服务保护成效[J]. 生物多样性, 2021, 29(5): 617-628. |
[10] | 戴逢斌, 吴杨, 潘玉雪, 张博雅, 田瑜. IPBES工作效率和科学职能的有效性分析[J]. 生物多样性, 2021, 29(5): 688-692. |
[11] | 张宇, 王露雨, 向昌林, 段美春, 张志升. 不同放牧强度对赛罕乌拉草原蜘蛛多样性的影响[J]. 生物多样性, 2021, 29(4): 467-476. |
[12] | 张剑坛, 李艳朋, 张入匀, 倪云龙, 周文莹, 练琚愉, 叶万辉. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(4): 456-466. |
[13] | 杨国平, 吴涛, 耿云芬, 李小双, 郝佳波, 袁春明. 生境片断化对濒危植物景东翅子树种群结构与动态的影响[J]. 生物多样性, 2021, 29(4): 449-455. |
[14] | 段美春, 覃如霞, 张宏斌, 陈宝雄, 金彬, 张松泊, 任少鹏, 金树权, 朱升海, 华家宁, 刘云慧, 宇振荣. 农田节肢动物不同取样方法的综合比较[J]. 生物多样性, 2021, 29(4): 477-487. |
[15] | 施雨含, 任宗昕, 赵延会, 王红. 气候变化对植物-传粉昆虫的分布区和物候及其互作关系的影响[J]. 生物多样性, 2021, 29(4): 495-506. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn