生物多样性 ›› 2021, Vol. 29 ›› Issue (5): 561-574. DOI: 10.17520/biods.2020246
• 研究报告: 植物多样性 • 下一篇
李亦超1, 陈永生1, Denis Sandanov3, 罗奥1, 吕童1, 苏香燕1, 刘云鹏1, 王庆刚2, Viktor Chepinoga4, Sergey Dudov5, 王伟6, 王志恒1,*()
收稿日期:
2020-06-15
接受日期:
2020-07-16
出版日期:
2021-05-20
发布日期:
2020-10-22
通讯作者:
王志恒
作者简介:
* E-mail: zhiheng.wang@pku.edu.cn基金资助:
Yichao Li1, Yongsheng Chen1, Denis Sandanov3, Ao Luo1, Tong Lü1, Xiangyan Su1, Yunpeng Liu1, Qinggang Wang2, Viktor Chepinoga4, Sergey Dudov5, Wei Wang6, Zhiheng Wang1,*()
Received:
2020-06-15
Accepted:
2020-07-16
Online:
2021-05-20
Published:
2020-10-22
Contact:
Zhiheng Wang
摘要:
毛茛科是真双子叶植物的基部类群之一, 包含多种药用植物, 具有较高的保护价值, 但关于毛茛科物种多样性和谱系多样性大尺度格局及其影响因子的研究还比较匮乏, 特别是以较高分辨率分布数据为基础的物种多样性格局研究尚未见报道。本文旨在: (1)建立欧亚大陆东部毛茛科植物分布数据库, 估算不同生活型物种多样性和谱系多样性格局, 并探究格局的形成机制。(2)分析毛茛科物种多样性和谱系多样性的相关关系, 确定多样性热点地区, 为毛茛科保护规划提供依据。根据中国、哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦、乌兹别克斯坦、蒙古和俄罗斯等国家的区域和地方植物志, 建立了“欧亚大陆东部地区毛茛科物种分布数据库”。该数据库包含了欧亚大陆东部地区1,688种毛茛科物种的分布数据, 空间分辨率为100 km × 100 km。在此基础上, 估算了毛茛科全部及不同生活型的物种多样性和谱系多样性格局, 并利用广义线性模型和等级方差分离方法分析了毛茛科物种和谱系多样性格局与环境因子的关系。最后比较了物种多样性和谱系多样性的相关关系, 确定了毛茛科的古热点地区。结果显示: (1)欧亚大陆东部毛茛科植物物种和谱系多样性均呈明显的纬度格局, 且在山区具有较高的多样性。(2)毛茛科植物物种和谱系多样性受现代气候、地形异质性和末次冰期以来的气候变化的共同影响, 但不同影响因子的相对贡献率在物种和谱系多样性及不同生活型之间差异显著。(3)中高纬度地区的谱系多样性高于给定物种数的预期, 是毛茛科的古热点地区, 在毛茛科保护规划中应受到重视。
李亦超, 陈永生, Denis Sandanov, 罗奥, 吕童, 苏香燕, 刘云鹏, 王庆刚, Viktor Chepinoga, Sergey Dudov, 王伟, 王志恒 (2021) 欧亚大陆东部毛茛科植物多样性格局及主导因子. 生物多样性, 29, 561-574. DOI: 10.17520/biods.2020246.
Yichao Li, Yongsheng Chen, Denis Sandanov, Ao Luo, Tong Lü, Xiangyan Su, Yunpeng Liu, Qinggang Wang, Viktor Chepinoga, Sergey Dudov, Wei Wang, Zhiheng Wang (2021) Patterns and environmental drivers of Ranunculaceae species richness and phylogenetic diversity across eastern Eurasia. Biodiversity Science, 29, 561-574. DOI: 10.17520/biods.2020246.
图1 欧亚大陆东部毛茛科全部物种(a)、木本植物(b)、草本植物(c)物种多样性及全部物种(d)、草本植物(e)谱系多样性格局
Fig. 1 Geographical patterns in the species richness of all Ranunculaceae species (a), woody species (b), and herbaceous species (c); phylogenetic diversity of all Ranunculaceae species (d) and woody species (e) in East Eurasia estimated in cyclinder grids of 100 km × 100 km
图2 欧亚大陆东部毛茛科谱系多样性与全部物种和草本植物物种多样性的关系(a, c)及残差格局图(b, d)
Fig. 2 The relationship between phylogenetic diversity and species diversity of all Ranunculaceae species (a) and herbaceous (c) species and their residual patterns (b, d) in East Eurasia
图3 欧亚大陆东部毛茛科全部物种、木本植物、草本植物物种多样性及全部物种和草本植物谱系多样性与现代气候、海拔高差和过去气候变化的关系散点图, 加粗的数值表示一行中R2最大的数值。
Fig. 3 The relationship between the richness of all Ranunculaceae species, woody species, and herbaceous species; and the phylogenetic diversity of all Ranunculaceae species and herbaceous species in East Eurasia and contemporary climate, elevation range, past climate change evaluated by generalized linear models, the value in bold indicates the maximum value of R2 in a row.
图4 现代气候、海拔高差和过去气候变化对欧亚大陆东部毛茛科全部物种、木本植物和草本植物丰富度和谱系多样性的影响。图中显示了物种多样性和各类影响因子之间的等级方差分离结果。不同柱子分别代表5个不同的解释因子, 分别代表水分(a)、能量(b)、温度季节性(c)、海拔高差(d)和末次冰期以来的温度变化速率(e)。深色表示独立解释量, 浅色表示共同解释量。
Fig. 4 The effects of contemporary climate, elevation range and past climate change on species richness and phylogenetic diversity of all Ranunculaceae species, woody specie, herbaceous species in East Eurasia. The figure shows the results of hierarchical partitioning between species richness and each selected dominant factor. Different charts respectively represent five different explanatory factors, namely, water (a), energy (b), temperature seasonality (c), elevation range (d) and temperature velocity since the Last Glacial Maximum (LGM) (e). The dark color means independent effect, light color means joint effects.
[1] |
Affenzeller M, Kadereit JW, Comes HP (2018) Parallel bursts of recent and rapid radiation in the Mediterranean and Eritreo-Arabian biodiversity hotspots as revealed by Globularia and Campylanthus (Plantaginaceae). Journal of Biogeography, 45, 552-566.
DOI URL |
[2] |
Albuquerque FS, Olalla-Tárraga MÁ, Montoya D, Rodríguez MÁ (2011) Environmental determinants of woody and herb plant species richness patterns in Great Britain. Écoscience, 18, 394-401.
DOI URL |
[3] |
Anderson CL, Bremer K, Friis EM (2005) Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. American Journal of Botany, 92, 1737-1748.
DOI URL |
[4] |
Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018) Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718-725.
DOI URL |
[5] |
Araújo MB, Nogués-Bravo D, Diniz-Filho JAF, Haywood AM, Valdes PJ, Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 8-15.
DOI URL |
[6] | Bao JH, Hong Y, Li XX, Jia JY, Yang HS, Ao WLJ (2018) Wild Mongolian medicine resources and utilization of Ranunculaceae in Horqin sandy land. Lishizhen Medicine and Materia Medica Research, 29, 699-701. (in Chinese) |
[ 包金花, 红艳, 李旭新, 贾俊英, 杨恒山, 奥·乌力吉 (2018) 科尔沁沙地毛茛科野生蒙药植物资源及其利用. 时珍国医国药, 29, 699-701.] | |
[7] |
Cai HY, Lyu LS, Shrestha N, Tang ZY, Su XY, Xu XT, Dimitrov D, Wang ZH (2021) Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Diversity and Distributions, 27, 179-194.
DOI URL |
[8] |
Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005) Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist, 168, 597-612.
PMID |
[9] | Chaboureau AC, Sepulchre P, Donnadieu Y, Franc A (2014) Tectonic-driven climate change and the diversification of angiosperms. Proceedings of the National Academy of Sciences, USA, 111, 14066-14070. |
[10] |
Chanderbali AS, Berger BA, Howarth DG, Soltis PS, Soltis DE (2016) Evolving ideas on the origin and evolution of flowers: New perspectives in the genomic era. Genetics, 202, 1255-1265.
DOI PMID |
[11] |
Chaieb G, Abdelly C, Michalet R (2019) Interactive effects of climate and topography on soil salinity and vegetation zonation in North African continental saline depressions. Journal of Vegetation Science, 30, 312-321.
DOI URL |
[12] | Chen ZD, Li DZ (2018) Phylogenetic diversity and biodiversity conservation. Kexue, 70, 22-25. (in Chinese) |
[ 陈之端, 李德铢 (2018) 系统发育多样性和生物多样性保护. 科学. 70, 22-25.] | |
[13] |
Clifford P, Richardson S, Hémon D (1989) Assessing the significance of the correlation between two spatial processes. Biometrics, 45, 123-134.
PMID |
[14] |
Colwell RK, Lees DC (2000) The mid-domain effect: Geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15, 70-76.
DOI URL |
[15] | Coiffard C, Gomez B, Daviero-Gomez V, Dilcher DL (2012) Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proceedings of the National Academy of Sciences, USA, 109, 20955-20959. |
[16] |
Currie DJ (2001) Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4, 216-225.
DOI URL |
[17] |
Dupont-Nivet G, Krijgsman W, Langereis CG, Abels HA, Dai S, Fang X (2007) Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445, 635-638.
PMID |
[18] |
Faith DP (1992) Systematics and conservation: On predicting the feature diversity of subsets of taxa. Cladistics, 8, 361-373.
DOI URL |
[19] | Faith DP (1994) Phylogenetic pattern and the quantification of organismal biodiversity. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 345, 45-58. |
[20] |
Faith DP (2013) Biodiversity and evolutionary history: Useful extensions of the PD phylogenetic diversity assessment framework. Annals of the New York Academy of Sciences, 1289, 69-89.
DOI URL |
[21] | Faith DP (2016) The PD phylogenetic diversity framework: Linking evolutionary history to feature diversity for biodiversity conservation. In: Biodiversity Conservation and Phylogenetic Systematics (eds Pellens R, Grandcolas P). Springer, Cham. |
[22] |
Fang JY, Yoda K (1988) Climate and vegetation in China (I). Changes in the altitudinal lapse rate of temperature and distribution of sea level temperature. Ecological Research, 3, 37-51.
DOI URL |
[23] |
Fang JY, Yoda K (1989) Climate and vegetation in China (II). Distribution of main vegetation types and thermal climate. Ecological Research, 4, 71-83.
DOI URL |
[24] | Feldmane D, Ruisa S, Rubauskis E, Kaufmane E (2016) Winter hardiness of sour cherries influenced by cultivar and soil moisture treatment. Acta Horticulturae, 1130, 111-116. |
[25] |
Ferreira Ribeiro L, Tabarelli M (2002) A structural gradient in Cerrado vegetation of Brazil: Changes in woody plant density, species richness, life history and plant composition. Journal of Tropical Ecology, 18, 775-794.
DOI URL |
[26] |
Fleishman E, Fay JP, Murphy DD (2000) Upsides and downsides: Contrasting topographic gradients in species richness and associated scenarios for climate change. Journal of Biogeography, 27, 1209-1219.
DOI URL |
[27] |
Francis AP, Currie DJ (1998) Global patterns of tree species richness in moist forests: Another look. Oikos, 81, 598-602.
DOI URL |
[28] |
Fritz SA, Rahbek C (2012) Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 39, 1373-1382.
DOI URL |
[29] |
Gebrehiwot K, Demissew S, Woldu Z, Fekadu M, Desalegn T, Teferi E (2019) Elevational changes in vascular plants richness, diversity, and distribution pattern in Abune Yosef Mountain range, Northern Ethiopia. Plant Diversity, 41, 220-228.
DOI PMID |
[30] | Hettenbergerová E, Hájek M, Zelený D, Jiroušková J, Mikulášková E (2013) Changes in species richness and species composition of vascular plants and bryophytes along a moisture gradient. Preslia, 85, 369-388. |
[31] |
Hof C, Levinsky I, Araújo MB, Rahbek C (2011) Rethinking species ability to cope with rapid climate change. Global Change Biology, 17, 2987-2990.
DOI URL |
[32] |
Huang J, Yang LQ, Yu Y, Liu YM, Xie DF, Li J, He XJ, Zhou SD (2018) Molecular phylogenetics and historical biogeography of the tribe Lilieae (Liliaceae): Bi-directional dispersal between biodiversity hotspots in Eurasia. Annals of Botany, 122, 1245-1262.
DOI PMID |
[33] |
Huang YJ, Jacques FMB, Su T, Ferguson DK, Tang H, Chen WY, Zhou ZK (2015) Distribution of Cenozoic plant relicts in China explained by drought in dry season. Scientific Reports, 5, 14212.
DOI URL |
[34] | Hurlbert AH, Jetz W (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences, USA, 104, 13384-13389. |
[35] |
Jacquemyn H, Butaye J, Hermy M (2001) Forest plant species richness in small, fragmented mixed deciduous forest patches: The role of area, time and dispersal limitation. Journal of Biogeography, 28, 801-812.
DOI URL |
[36] |
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature, 491, 444-448.
DOI PMID |
[37] |
Jones HP, Barber NA, Gibson DJ (2019) Is phylogenetic and functional trait diversity a driver or a consequence of grassland community assembly? Journal of Ecology, 107, 2027-2032.
DOI URL |
[38] |
Kareiva P, Marvier M (2003) Conserving biodiversity coldspots: Recent calls to direct conservation funding to the world biodiversity hotspots may be bad investment advice. American Scientist, 91, 344-351.
DOI URL |
[39] | Kerr JT (2001) Butterfly species richness patterns in Canada: Energy, heterogeneity, and the potential consequences of climate change. Ecology and Society, 5, art10. |
[40] |
Kinlock NL, Prowant L, Herstoff EM, Foley CM, Akin-Fajiye M, Bender N, Umarani M, Ryu HY, Şen B, Gurevitch J (2018) Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Global Ecology and Biogeography, 27, 125-141.
DOI URL |
[41] |
Kong HH, Zhang Y, Hong Y, Barker MS (2017) Multilocus phylogenetic reconstruction informing polyploid relationships of Aconitum subgenus Lycoctonum (Ranunculaceae) in China. Plant Systematics and Evolution, 303, 727-744.
DOI URL |
[42] |
Li FR, Peng SL, Chen BM, Hou YP (2010) A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica, 36, 1-9.
DOI URL |
[43] | Li M, He J, Zhao Z, Lyu R, Yao M, Cheng J, Xie L (2020) Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, 8729. |
[44] |
Li MY, Zhang SR, Xu QH, Xiao JL, Wen RL (2019) Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum. Science China Earth Sciences, 62, 1279-1287.
DOI URL |
[45] |
Liu QF, Liu Y, Sun XL, Zhang XF, Kang SRL, Ding Y, Zhang Q, Niu JM (2015) The explanation of climatic hypotheses to community species diversity patterns in Inner Mongolia grasslands. Biodiversity Science, 23, 463-470. (in Chinese with English abstract)
DOI URL |
[ 刘庆福, 刘洋, 孙小丽, 张雪峰, 康萨如拉, 丁勇, 张庆, 牛建明 (2015) 气候假说对内蒙古草原群落物种多样性格局的解释. 生物多样性, 23, 463-470.] | |
[46] |
Liu YP, Su XY, Shrestha N, Xu XT, Wang SY, Li YQ, Wang QG, Sandanov D, Wang ZH (2019) Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms. Ecography, 42, 334-345.
DOI URL |
[47] |
Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature, 462, 1052-1055.
DOI PMID |
[48] |
López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S (2011a) Centres of plant endemism in China: Places for survival or for speciation? Journal of Biogeography, 38, 1267-1280.
DOI URL |
[49] |
López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S (2011b) Mountains of Southern China as “plant museums” and “plant cradles”: Evolutionary and conservation insights. Mountain Research and Development, 31, 261-269.
DOI URL |
[50] |
Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH, Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu AM, Soltis PS, Soltis DE, Li JH, Chen ZD (2018) Evolutionary history of the angiosperm flora of China. Nature, 554, 234-238.
DOI |
[51] |
Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: The distinction between and reconciliation of ‘predictive’ and ‘explanatory’ models. Biodiversity and Conservation, 9, 655-671.
DOI URL |
[52] |
Manafzadeh S, Staedler YM, Conti E (2017) Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biological Reviews, 92, 1365-1388.
DOI URL |
[53] |
Manish K, Pandit MK, Telwala Y, Nautiyal DC, Koh LP, Tiwari S (2017) Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya. Journal of Plant Research, 130, 829-844.
DOI PMID |
[54] |
Martínez ML (2003) Facilitation of seedling establishment by an endemic shrub in tropical coastal sand dunes. Plant Ecology, 168, 333-345.
DOI URL |
[55] |
Massad TJ (2013) Ontogenetic differences of herbivory on woody and herbaceous plants: A meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia, 172, 1-10.
DOI PMID |
[56] |
Miller JT, Jolley-Rogers G, Mishler BD, Thornhill AH (2018) Phylogenetic diversity is a better measure of biodiversity than taxon counting. Journal of Systematics and Evolution, 56, 663-667.
DOI URL |
[57] |
Mishler BD, Guralnick R, Soltis PS, Smith SA, Soltis DE, Barve N, Allen JM, Laffan SW (2020) Spatial phylogenetics of the North American flora. Journal of Systematics and Evolution, 58, 393-405.
DOI URL |
[58] |
Morales CG, Pino MT, del Pozo A (2013) Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae, 162, 234-241.
DOI URL |
[59] |
Muellner-Riehl AN, Schnitzler J, Kissling WD, Mosbrugger V, Rijsdijk KF, Seijmonsbergen AC, Versteegh H, Favre A (2019) Origins of global mountain plant biodiversity: Testing the ‘mountain-geobiodiversity hypothesis’. Journal of Biogeography, 46, 2826-2838.
DOI |
[60] |
O’Brien EM (1993) Climatic gradients in woody plant species richness: Towards an explanation based on an analysis of southern Africa’s woody flora. Journal of Biogeography, 20, 181-198.
DOI URL |
[61] |
Pretzsch H (2002) A unified law of spatial allometry for woody and herbaceous plants. Plant Biology, 4, 159-166.
DOI URL |
[62] |
Qi W, Bu HY, Liu K, Li WJ, Knops JMH, Wang JH, Li WL, Du GZ (2014) Biological traits are correlated with elevational distribution range of eastern Tibetan herbaceous species. Plant Ecology, 215, 1187-1198.
DOI URL |
[63] |
Qian H (2002) A comparison of the taxonomic richness of temperate plants in East Asia and North America. American Journal of Botany, 89, 1818-1825.
DOI URL |
[64] | Qian H, Jin Y, Ricklefs RE (2017) Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences, USA, 114, 11452-11457. |
[65] |
Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407, 180-182.
PMID |
[66] | Qiu HJ, Sun JJ, Xu D, Jiao JJ, Xue M, Yuan WG, Shen AH, Jiang B, Li S (2020) The distribution dynamics of Ormosia mangrove under different climate change scenarios since the Last Glacial Maximum. Acta Ecologica Sinica, 40, 3016-3026. (in Chinese with English abstract) |
[ 邱浩杰, 孙杰杰, 徐达, 焦洁洁, 薛敏, 袁位高, 沈爱华, 江波, 李胜 (2020) 末次盛冰期以来红豆树在不同气候变化情景下的分布动态. 生态学报, 40, 3016-3026.] | |
[67] |
Rabosky DL (2020) Speciation rate and the diversity of fishes in freshwaters and the oceans. Journal of Biogeography, 47, 1207-1217.
DOI URL |
[68] |
Rodrigues ASL, Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105, 103-111.
DOI URL |
[69] |
Roscher C, Beßler H, Oelmann Y, Engels C, Wilcke W, Schulze ED (2009) Resources, recruitment limitation and invader species identity determine pattern of spontaneous invasion in experimental grasslands. Journal of Ecology, 97, 32-47.
DOI URL |
[70] |
Sakai A, Malla SB (1981) Winter hardiness of tree species at high altitudes in the east Himalaya, Nepal. Ecology, 62, 1288-1298.
DOI URL |
[71] |
Salinas MJ, Casas JJ (2007) Riparian vegetation of two semi-arid Mediterranean rivers: Basin-scale responses of woody and herbaceous plants to environmental gradents. Wetlands, 27, 831-845.
DOI URL |
[72] |
Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC (2011) The influence of late quaternary climate-change velocity on species endemism. Science, 334, 660-664.
DOI URL |
[73] |
Saul-Tcherkas V, Steinberger Y (2011) Soil microbial diversity in the vicinity of a Negev desert shrub—Reaumuria negevensis. Microbial Ecology, 61, 64-81.
DOI PMID |
[74] |
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, other 117 authors (2008) The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science. 322, 225-230.
DOI URL |
[75] | Skov F, Svenning JC (2004) Potential Impact of Climatic Change on the Distribution of Forest Herbs in Europe. Echography, 27, 366-380. |
[76] |
Slezák M, Axmanová I (2016) Patterns of plant species richness and composition in deciduous oak forests in relation to environmental drivers. Community Ecology, 17, 61-70.
DOI URL |
[77] | Smith SA, Beaulieu JM (2009) Life history influences rates of climatic niche evolution in flowering plants. Proceedings of the Royal Society B: Biological Sciences, 276, 4345-4352. |
[78] |
Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science, 322, 86-89.
DOI URL |
[79] |
Song B, Sun L, Lev-Yadun S, Moles AT, Zhang S, Jiang XL, Gao YQ, Xu Q, Sun H (2019) Plants are more likely to be spiny at mid-elevations in the Qinghai-Tibetan Plateau, south-western China. Journal of Biogeography, 47, 250-260.
DOI URL |
[80] |
Song YY, Zhou CB, Zhang WH (2011) Vegetation coverage, species richness, and dune stability in the southern part of Gurbantüngguet Desert. Ecological Research, 26, 79-86.
DOI URL |
[81] |
Sramkó G, Laczkó L, Volkova PA, Bateman RM, Mlinarec J (2019) Evolutionary history of the Pasque-flowers (Pulsatilla, Ranunculaceae): Molecular phylogenetics, systematics and rDNA evolution. Molecular Phylogenetics and Evolution, 135, 45-61.
DOI PMID |
[82] |
Stein A, Kreft H (2015) Terminology and quantification of environmental heterogeneity in species-richness research. Biological Reviews, 90, 815-836.
DOI URL |
[83] |
Steinberg SL, van Bavel CHM, McFarland MJ (1990) Improved sap flow gauge for woody and herbaceous plants. Agronomy Journal, 82, 851-854.
DOI URL |
[84] |
Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501, 539-542.
DOI PMID |
[85] |
Svenning JC, Skov F (2007) Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecology and Biogeography, 16, 234-245.
DOI URL |
[86] |
Tang CQ, Matsui T, Ohashi H, Dong YF, Momohara A, Herrando-Moraira S, Qian SH, Yang YC, Ohsawa M, Luu HT, Grote PJ, Krestov PV, LePage B, Werger M, Robertson K, Hobohm C, Wang CY, Peng MC, Chen X, Wang HC, Su WH, Zhou R, Li SF, He LY, Yan K, Zhu MY, Hu J, Yang RH, Li WJ, Tomita M, Wu ZL, Yan HZ, Zhang GF, He H, Yi SR, Gong HD, Song K, Song D, Li XS, Zhang ZY, Han PB, Shen LQ, Huang DS, Luo K, López-Pujol J (2018) Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 9, 4488.
DOI URL |
[87] | Tamura M (1995) Angiospermae: Ordnung Ranunculales Fam. Ranunculaceae, Die Natürlichen. Pflanzenfamilien, 17, 89-105. |
[88] |
Tsirogiannis C, Sandel B (2016) PhyloMeasures: A package for computing phylogenetic biodiversity measures and their statistical moments. Ecography, 39, 709-714.
DOI URL |
[89] |
Tucker CM, Cadotte MW (2013) Unifying measures of biodiversity: Understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions, 19, 845-854.
DOI URL |
[90] |
Villéger S, Maire E, Leprieur F, Vila M (2017) On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecology Letters, 20, 554-557.
DOI URL |
[91] |
Wang QG, Su XY, Shrestha N, Liu YP, Wang SY, Xu XT, Wang ZH (2017) Historical factors shaped species diversity and composition of Salix in eastern Asia. Scientific Reports, 7, 42038.
DOI URL |
[92] |
Wang SY, Xu XT, Shrestha N, Zimmermann NE, Tang ZY, Wang ZH (2017) Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). PLoS ONE, 12, e0175742.
DOI URL |
[93] |
Wang W, Lin L, Xiang XG, Ortiz R del C, Liu Y, Xiang KL, Yu SX, Xing YW, Chen ZD (2016) The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae. Scientific Reports, 6, 27259.
DOI PMID |
[94] | Wang ZH, Fang JY, Tang ZY, Lin X (2011) Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132. |
[95] |
Wang ZH, Fang JY, Tang ZY, Lin X (2012) Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography, 35, 1124-1133.
DOI URL |
[96] |
Wang ZH, Tang ZY, Fang JY (2009) The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17, 613-624. (in Chinese with English abstract)
DOI URL |
[ 王志恒, 唐志尧, 方精云 (2009) 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.] | |
[97] |
Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4, 845-872.
DOI URL |
[98] |
Weiser MD, Enquist BJ, Boyle B, Killeen TJ, Jørgensen PM, Fonseca G, Jennings MD, Kerkhoff AJ, Lacher TE, Monteagudo A, Vargas MPN, Phillips OL, Swenson NG (2007) Latitudinal patterns of range size and species richness of New World woody plants. Global Ecology and Biogeography, 16, 679-688.
DOI URL |
[99] | Xing YW, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, USA, 114, E3444-E3451. |
[100] |
Xu J, Jiang XL, Deng M, Westwood M, Song YG, Zheng SS (2016) Conservation genetics of rare trees restricted to subtropical montane cloud forests in southern China: A case study from Quercus arbutifolia (Fagaceae). Tree Genetics and Genomes, 12, 90.
DOI URL |
[101] |
Zhang ZJ, He JS, Li JS, Tang ZY (2015) Distribution and conservation of threatened plants in China. Biological Conservation, 192, 454-460.
DOI URL |
[102] |
Zhang ZS, Ramstein G, Schuster M, Li C, Contoux C, Yan Q (2014) Aridification of the Sahara Desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 513, 401-404.
DOI URL |
[103] | Zhou NF, Zhang JP, Liu H, Zha WW, Pei D (2018) New protocols for paraffin sections of heterogeneous tissues of woody plants. Chinese Bulletin of Botany, 53, 653-660. (in Chinese with English abstract) |
[ 周乃富, 张俊佩, 刘昊, 查巍巍, 裴东 (2018) 木本植物非均质化组织石蜡切片制作方法. 植物学报, 53, 653-660.] | |
[104] | Zhu GL, Li J, Wei XH, He NP (2017) Longitudinal patterns of productivity and plant diversity in Tibetan alpine grasslands. Journal of Natural Resources, 32, 210-222. (in Chinese with English abstract) |
[ 朱桂丽, 李杰, 魏学红, 何念鹏 (2017) 青藏高寒草地植被生产力与生物多样性的经度格局. 自然资源学报, 32, 210-222.] | |
[105] |
Zhu H (2017) A biogeographical study on tropical flora of Southern China. Ecology and Evolution, 7, 10398-10408.
DOI URL |
[106] |
Zhu H, Cao M, Hu HB (2006) Geological history, flora, and vegetation of Xishuangbanna, southern Yunnan, China. Biotropica, 38, 310-317.
DOI URL |
[107] |
Zhu ZX, Nizamani MM, Sahu SK, Kunasingam A, Wang HF (2019) Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecologica, 101, 103481.
DOI URL |
[108] |
Ziman SN, Keener CS (1989) A geographical analysis of the family Ranunculaceae. Annals of the Missouri Botanical Garden, 76, 1012-1049.
DOI URL |
[109] |
Zou DT, Wang QG, Luo A, Wang ZH (2019) Species richness patterns and resource plant conservation assessments of Rosaceae in China. Chinese Journal of Plant Ecology, 43, 1-15. (in Chinese with English abstract)
DOI URL |
[ 邹东廷, 王庆刚, 罗奥, 王志恒 (2019) 中国蔷薇科植物多样性格局及其资源植物保护现状. 植物生态学报, 43, 1-15.] | |
[110] |
Zu KL, Luo A, Shrestha N, Liu B, Wang ZH, Zhu XY (2019) Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai-Tibetan Plateau. Ecology and Evolution, 9, 9586-9596.
DOI URL |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[5] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[6] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[7] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[8] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[9] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[10] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[11] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[12] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[13] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[14] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[15] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn