生物多样性 ›› 2019, Vol. 27 ›› Issue (7): 772-777. DOI: 10.17520/biods.2019067
所属专题: 传粉生物学
路宁娜1,2,*(), 刘振恒3, 马妍2, 路广梅2, 孟秀祥1,*()
收稿日期:
2019-03-08
接受日期:
2019-06-20
出版日期:
2019-07-20
发布日期:
2019-08-21
通讯作者:
路宁娜,孟秀祥
基金资助:
Ningna Lu1,2,*(), Zhenheng Liu3, Yan Ma2, Guangmei Lu2, Xiuxiang Meng1,*()
Received:
2019-03-08
Accepted:
2019-06-20
Online:
2019-07-20
Published:
2019-08-21
Contact:
Ningna Lu, Xiuxiang Meng
摘要:
传粉者的选择作用是花表型性状进化的重要驱动力, 解析选择作用的强度是理解花进化的关键。通过表型操控实验和表型选择研究能够分析花性状与其适合度的关系, 探究花性状的表型选择作用。为揭示花性状变化对雌性适合度的影响, 本研究处理展毛翠雀(Delphinium kamaonense var. glabrescens)花萼片大小, 并进行表型选择分析。结果表明: 人为减小展毛翠雀花萼片显著降低了传粉者的访花频率, 但是并没有影响种子产量(种子数和结籽率), 说明展毛翠雀花萼片的大小不影响种子产量, 可能主要吸引传粉昆虫输出花粉。通过雌性适合度(种子数量)估计表型选择梯度, 发现花萼片大小(长和宽)没有受到显著的直接选择梯度。但是, 花距长受到显著的线性选差和选择梯度, 表明花距的延长能够增加种子产量。本研究表明展毛翠雀花性状受到选择的作用, 但萼片和花距有不同的功能, 分别影响传粉者访问频率和种子产量。
路宁娜, 刘振恒, 马妍, 路广梅, 孟秀祥 (2019) 展毛翠雀的花性状表型选择. 生物多样性, 27, 772-777. DOI: 10.17520/biods.2019067.
Ningna Lu, Zhenheng Liu, Yan Ma, Guangmei Lu, Xiuxiang Meng (2019) Phenotypic selection analysis of flower traits in Delphinium kamaonense var. glabrescens (Ranunculaceae). Biodiversity Science, 27, 772-777. DOI: 10.17520/biods.2019067.
萼片长 Sepal length (mm) | 萼片宽 Sepal width (mm) | 花距长 Spur length (mm) | |
---|---|---|---|
花高 Flower height (cm) | 0.192 | 0.128 | -0.035 |
萼片长 Sepal length (mm) | 0.715*** | 0.569*** | |
萼片宽 Sepal width (mm) | 0.483*** |
表1 展毛翠雀花性状间的表型相关性
Table 1 Pearson’s correlation coefficients among the floral traits of Delphinium kamaonense var. glabrescens. n = 50; *** P < 0.001.
萼片长 Sepal length (mm) | 萼片宽 Sepal width (mm) | 花距长 Spur length (mm) | |
---|---|---|---|
花高 Flower height (cm) | 0.192 | 0.128 | -0.035 |
萼片长 Sepal length (mm) | 0.715*** | 0.569*** | |
萼片宽 Sepal width (mm) | 0.483*** |
载荷 Loading | |||
---|---|---|---|
PC1 | PC2 | PC3 | |
萼片长Sepal length | 0.818 | 0.388 | 0.152 |
萼片宽Sepal width | 0.936 | 0.171 | 0.031 |
花距长Spur length | 0.309 | 0.944 | -0.044 |
花高Flower height | 0.091 | -0.027 | 0.994 |
解释方差 Percentage variance explained (%) | 41.22% | 26.77% | 25.35% |
表2 展毛翠雀花特征的主成分分析
Table 2 Loadings of floral traits of Delphinium kamaonense var. glabrescens on the first three components (PCs) produced by a principle components analysis with a varimax rotation.
载荷 Loading | |||
---|---|---|---|
PC1 | PC2 | PC3 | |
萼片长Sepal length | 0.818 | 0.388 | 0.152 |
萼片宽Sepal width | 0.936 | 0.171 | 0.031 |
花距长Spur length | 0.309 | 0.944 | -0.044 |
花高Flower height | 0.091 | -0.027 | 0.994 |
解释方差 Percentage variance explained (%) | 41.22% | 26.77% | 25.35% |
线性选择差 Linear selection differential (Mean ± SE) | 线性选择梯度 Linear selection gradient (Mean ± SE) | ||
---|---|---|---|
花特征 Floral traits | 萼片长 Sepal length | 0.284 ± 0.058† | -0.017 ± 0.071 |
萼片宽 Sepal width | 0.286 ± 0.072† | 0.024 ± 0.068 | |
花距长 Spur length | 0.438 ± 0.055** | 0.143 ± 0.059* | |
花高 Flower height | 0.184 ± 0.064 | 0.065 ± 0.05 | |
花特征主成分 Floral trait components (PCs) | PC1 | 0.159 ± 0.051 | 0.058 ± 0.047 |
PC2 | 0.242 ± 0.065 | 0.131 ± 0.047** | |
PC3 | 0.174 ± 0.064 | 0.057 ± 0.049 |
表3 通过雌性适合度估计展毛翠雀花特征及其主成分受到的表型选择。N = 50; ** P < 0.01; * P < 0.05; † P < 0.1.
Table 3 Phenotypic selection on floral traits and the first three components (PCs) of Delphinium kamaonense var. glabrescens through female fitness. N = 50; ** P < 0.01; * P < 0.05; † P < 0.1.
线性选择差 Linear selection differential (Mean ± SE) | 线性选择梯度 Linear selection gradient (Mean ± SE) | ||
---|---|---|---|
花特征 Floral traits | 萼片长 Sepal length | 0.284 ± 0.058† | -0.017 ± 0.071 |
萼片宽 Sepal width | 0.286 ± 0.072† | 0.024 ± 0.068 | |
花距长 Spur length | 0.438 ± 0.055** | 0.143 ± 0.059* | |
花高 Flower height | 0.184 ± 0.064 | 0.065 ± 0.05 | |
花特征主成分 Floral trait components (PCs) | PC1 | 0.159 ± 0.051 | 0.058 ± 0.047 |
PC2 | 0.242 ± 0.065 | 0.131 ± 0.047** | |
PC3 | 0.174 ± 0.064 | 0.057 ± 0.049 |
[1] | Aigner PA ( 2005) Variation in pollination performance gradients in a Dudleya species complex: Can generalization promote floral divergence? Functional Ecology, 19, 681-689. |
[2] | Alexandersson R, Johnson SD ( 2002) Pollinator-mediated selection on floral tube length in a hawkmoth-pollinated Gladiolus (Iridaceae). Proceedings of the Royal Society B: Biological Sciences, 269, 631-636. |
[3] | Bloch D, Erhardt A ( 2008) Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology, 89, 2453-2460. |
[4] | Boberg E, Ågren J ( 2009) Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Functional Ecology, 23, 1022-1028. |
[5] | Campbell DR ( 2009) Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 103, 1557-1566. |
[6] | Campbell DR, Waser NM, Price MV ( 1996) Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Aquatic Ecology, 77, 1463-1472. |
[7] | Clements FE, Long FL ( 1923) 5. Pollinators and flowers visited & 6. flowers and their visitors. In: Experimental Pollination: An Outline of the Ecology of Flowers and Insects, pp. 249- 261. Carnegie Institute of Washington Publication, Utah State University, Logan. |
[8] | Cuartas-Domínguez M, Medel R ( 2010) Pollinator-mediated selection and experimental manipulation of the flower phenotype in Chloraea bletioides. Functional Ecology, 24, 1219-1227. |
[9] | Darwin CR ( 1862) On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by Insects, and on the Good Effects of Intercrossing, pp. 365. John Murray, London. |
[10] | Dudash MR, Hassler C, Stevens PM, Fenster CB ( 2011) Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. American Journal of Botany, 98, 275-282. |
[11] | Ellis AG, Johnson SD ( 2010) Gender differences in the effects of floral spur length manipulation on fitness in a hermaphrodite orchid. International Journal of Plant Sciences, 171, 1010-1019. |
[12] | Fenster CB, Armbruster WS, Dudash MR ( 2009) Specialization of flowers: Is floral orientation an overlooked first step? New Phytologist, 183, 502-506. |
[13] | Fenster CB, Cheely G, Dudash MR, Reynolds RT ( 2006) Nectar reward and advertisement in hummingbird-pollinated Silene virginica (Caryophyllaceae). American Journal of Botany, 93, 1800-1807. |
[14] | Harder LD, Johnson SD ( 2009) Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytologist, 183, 530-545. |
[15] | Herrera CM ( 2001) Deconstructing a floral phenotype: Do pollinators select for corolla integration in Lavandula latifolia? Journal of Evolutionary Biology, 14, 574-584. |
[16] | Herrera CM, Castellanos MC, Medrano M, Harder LD, Barrett SCH ( 2006) Geographical context of floral evolution: Towards an improved research programme in floral diversification. In: Ecology and Evolution of Flowers, pp. 278-294. Oxford University Press, Oxford. |
[17] | Johnson SD, Steiner KE ( 1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 51, 45-53. |
[18] | Kay KM, Sargent RD ( 2009) The role of animal pollination in plant speciation: Integrating ecology, geography, and genetics. Annual Review of Ecology, Evolution and Systematics, 40, 637-656. |
[19] | Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D ( 2001) The strength of phenotypic selection in natural populations. The American Naturalist, 157, 245-261. |
[20] | Klinkhamer PGL, de Jong TJ ( 1993) Attractiveness to pollinators: A plant’s dilemma. Oikos, 66, 180-184. |
[21] | Lande R, Arnold SJ ( 1983) The measurement of selection on correlated characters. Evolution, 37, 1210-1226. |
[22] | Maad J ( 2000) Phenotypic selection in hawkmoth-pollinated Platanthera bifolia: Targets and fitness surfaces. Evolution, 54, 112-123. |
[23] | Meléndez-Ackerman E, Campbell DR ( 1998) Adaptive significance of flower color and inter-trait correlations in an Ipomopsis hybrid zone. Evolution, 52, 1293-1303. |
[24] | Nilsson LA ( 1988) The evolution of flowers with deep corolla tubes. Nature, 334, 147-149. |
[25] | O’Connell LM, Johnston MO ( 1998) Male and female pollination success in a deceptive orchid, a selection study. Ecology, 79, 1246-1260. |
[26] | Reynolds RJ, Dudash MR, Fenster CB ( 2010) Multi-year study of multivariate linear and nonlinear phenotypic selection on floral traits of hummingbird-pollinated Silene virginica. Evolution, 64, 358-369. |
[27] | Schemske DW, Bradshaw HD ( 1999) Pollinator preference and the evolution of floral traits in monkey flowers (Mimulus). Proceedings of the National Academy of Sciences, USA, 96, 11910-11915. |
[28] | Sletvold N, Grindeland JM, Ågren J ( 2010) Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica. New Phytologist, 188, 385-392. |
[29] | Wang XJ, Zhang LC, Zhao ZG ( 2010) The pattern of seed reproduction and its response to resources in Pedicularis semitorta individuals. Acta Prataculturae Sinica, 19, 236-242. (in Chinese with English abstract) |
[ 王晓娟, 张龙冲, 赵志刚 ( 2010) 半扭卷马先蒿个体内的种子生产模式及其对资源的响应. 草业学报, 19, 236-242.] | |
[30] | Zhang C, Zha SQ, Yang YP, Duan YW ( 2012) Effects of the yellow barbs of the staminodes on reproductive success of Delphinium caeruleum (Ranunculaceae). Biodiversity Science, 20, 348-353. (in Chinese with English abstract) |
[ 张婵, 查绍琴, 杨永平, 段元文 ( 2012) 蓝翠雀花退化雄蕊上的黄色髯毛对其繁殖成功的影响. 生物多样性, 20, 348-353.] | |
[31] | Zhao ZG, Lu NN, Conner JK ( 2016) Adaptive pattern of nectar volume within inflorescences: Bumblebee foraging behavior and pollinator-mediated natural selection. Scientific Reports, 6, 34499. |
[32] | Zhao ZG, Huang SQ ( 2013) Differentiation of floral traits associated with pollinator preference in a generalist-pollinated herb, Trollius ranunculoides (Ranunculaceae). International Journal of Plant Sciences, 174, 637-646. |
[33] | Zhao ZG, Wang YK ( 2015) Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLoS ONE, 10, e0118299. |
[1] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[2] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[3] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
[4] | 胡文昭, 赵骥民, 张彦文. 二态混合交配系统的适合度优势及其维持机制研究进展[J]. 生物多样性, 2019, 27(4): 468-474. |
[5] | 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[6] | 储诚进, 王酉石, 刘宇, 蒋林, 何芳良. 物种共存理论研究进展[J]. 生物多样性, 2017, 25(4): 345-354. |
[7] | 蒋裕良, 白坤栋, 郭屹立, 王斌, 李冬兴, 李先琨, 刘志尚. 北热带喀斯特森林木本植物花性状及其生境分异[J]. 生物多样性, 2016, 24(2): 148-156. |
[8] | 张婵, 查绍琴, 杨永平, 段元文. 蓝翠雀花退化雄蕊上的黄色髯毛对其繁殖成功的影响[J]. 生物多样性, 2012, 20(3): 348-353. |
[9] | 刘乐乐, 刘左军, 杜国祯, 赵志刚. 毛茛状金莲花不同花期的花特征和访花昆虫的变化及表型选择[J]. 生物多样性, 2012, 20(3): 317-323. |
[10] | 卢宝荣, 夏辉, 汪魏, 杨箫. 天然杂交与遗传渐渗对植物入侵性的影响[J]. 生物多样性, 2010, 18(6): 577-589. |
[11] | 卢宝荣, 夏辉, 杨箫, 金鑫, 刘苹, 汪魏. 杂交–渐渗进化理论在转基因逃逸及其环境风险评价和研究中的意义[J]. 生物多样性, 2009, 17(4): 362-377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn