生物多样性 ›› 2018, Vol. 26 ›› Issue (10): 1127-1132. DOI: 10.17520/biods.2018081
所属专题: 土壤生物与土壤健康
• 研究报告 • 上一篇
伍一宁1,2, 王贺1, 钟海秀2, 许楠2, 李金博2, 王继丰2, 倪红伟2,*(), 邹红菲1,*()
收稿日期:
2018-03-19
接受日期:
2018-06-13
出版日期:
2018-10-20
发布日期:
2019-01-06
通讯作者:
倪红伟,邹红菲
作者简介:
# 共同第一作者
基金资助:
Yining Wu1,2, He Wang1, Haixiu Zhong2, Nan Xu2, Jinbo Li2, Jifeng Wang2, Hongwei Ni2,*(), Hongfei Zou1,*()
Received:
2018-03-19
Accepted:
2018-06-13
Online:
2018-10-20
Published:
2019-01-06
Contact:
Ni Hongwei,Zou Hongfei
About author:
# Co-first authors
摘要:
为研究大气CO2浓度升高条件下土壤动物的响应, 本文采用开顶式气室(OTC)控制大气CO2浓度, 设置了3个梯度, 分别为低浓度370 ppm背景CO2 (AC)、中浓度550 ppm CO2 (EC1)和高浓度700 ppm CO2 (EC2)。于2017年秋季取样并用改良Tullgren干漏斗法和Baermann湿漏斗分离土壤动物。结果表明: (1)共捕获土壤动物6,268头, 隶属于7纲15目, 优势类群为甲螨亚目, 占捕获量的88.13%; 常见类群为弹尾目和双翅目幼虫, 合计占捕获量的9%。不同CO2浓度水平下, 优势类群(甲螨亚目)和常见类群(弹尾目、双翅目幼虫)相同, 但是稀有类群存在一定差异。(2) CO2浓度升高显著增加了甲螨亚目的类群数和个体密度, 显著降低了弹尾目的类群数和个体密度, 对其他土壤动物无显著影响。(3)三江平原不同浓度条件下土壤动物的Shannon-Wiener多样性指数、Pielou均匀度指数均为AC > EC1 > EC2, 而优势度指数为EC2 > EC1 > AC, 丰富度指数为AC > EC2 > EC1。研究表明, 气候变化有可能影响土壤动物的群落结构以及土壤动物的多样性。
伍一宁, 王贺, 钟海秀, 许楠, 李金博, 王继丰, 倪红伟, 邹红菲 (2018) 三江平原土壤动物群落多样性对CO2浓度升高的响应. 生物多样性, 26, 1127-1132. DOI: 10.17520/biods.2018081.
Yining Wu, He Wang, Haixiu Zhong, Nan Xu, Jinbo Li, Jifeng Wang, Hongwei Ni, Hongfei Zou (2018) The response of diverse soil fauna communities to elevated CO2 concentrations in Sanjiang Plain. Biodiversity Science, 26, 1127-1132. DOI: 10.17520/biods.2018081.
AC | EC1 | EC2 | ||||
---|---|---|---|---|---|---|
密度 Density | 优势度 Dominance | 密度 Density | 优势度 Dominance | 密度 Density | 优势度 Dominance | |
弹尾目 Collembola | 7.98% | ++ | 5.63% | ++ | 2.53% | ++ |
甲螨亚目 Oribatida | 82.32% | +++ | 86.00% | +++ | 92.88% | +++ |
双翅目幼虫 Diptera larvae | 6.63% | ++ | 4.81% | ++ | 2.28% | ++ |
蜘蛛目 Araneae | 0.06% | + | 0.16% | + | 0.14% | + |
鞘翅目幼虫 Coleptera larvae | 0.68% | + | 0.55% | + | 0.25% | + |
同翅目 Homoptera | 0.49% | + | 0.27% | + | 0.11% | + |
线蚓科 Enchytraeidae | 0.49% | + | 0.38% | + | 0.21% | + |
原尾纲 Protura | 0.06% | + | - | - | - | - |
缨翅目 Thysanoptera | 0.06% | + | - | - | 0.04% | + |
中气门亚目 Mesostigmata | 0.80% | + | 0.33% | + | 0.11% | + |
啮虫目 Psocoptera | 0.06% | + | 0.33% | + | 0.14% | + |
绒螨科 Trombidformes | 0.06% | + | 0.16% | + | 0.18% | + |
线虫 Nemata | 0.06% | + | 0.16% | + | 0.78% | + |
鞘翅目成虫 Coleptera imago | 0.18% | + | 0.60% | + | 0.28% | + |
蜚蠊目 Blattoptera | 0.06% | + | 0.05% | + | 0.04% | + |
正蚓目 Lumbricida | - | - | - | - | 0.04% | + |
双翅目成虫 Diptera imago | - | - | 0.55% | + | - | - |
表1 不同CO2浓度处理下土壤动物群落组成和个体密度(ind./m2)。AC: 370 ppm CO2; EC1: 550 ppm CO2; EC2: 700 ppm CO2。
Table 1 Soil fauna communities and densities (ind./m2) under different CO2 concentration. AC, 370 ppm CO2; EC1, 550 ppm CO2; EC2, 700 ppm CO2.
AC | EC1 | EC2 | ||||
---|---|---|---|---|---|---|
密度 Density | 优势度 Dominance | 密度 Density | 优势度 Dominance | 密度 Density | 优势度 Dominance | |
弹尾目 Collembola | 7.98% | ++ | 5.63% | ++ | 2.53% | ++ |
甲螨亚目 Oribatida | 82.32% | +++ | 86.00% | +++ | 92.88% | +++ |
双翅目幼虫 Diptera larvae | 6.63% | ++ | 4.81% | ++ | 2.28% | ++ |
蜘蛛目 Araneae | 0.06% | + | 0.16% | + | 0.14% | + |
鞘翅目幼虫 Coleptera larvae | 0.68% | + | 0.55% | + | 0.25% | + |
同翅目 Homoptera | 0.49% | + | 0.27% | + | 0.11% | + |
线蚓科 Enchytraeidae | 0.49% | + | 0.38% | + | 0.21% | + |
原尾纲 Protura | 0.06% | + | - | - | - | - |
缨翅目 Thysanoptera | 0.06% | + | - | - | 0.04% | + |
中气门亚目 Mesostigmata | 0.80% | + | 0.33% | + | 0.11% | + |
啮虫目 Psocoptera | 0.06% | + | 0.33% | + | 0.14% | + |
绒螨科 Trombidformes | 0.06% | + | 0.16% | + | 0.18% | + |
线虫 Nemata | 0.06% | + | 0.16% | + | 0.78% | + |
鞘翅目成虫 Coleptera imago | 0.18% | + | 0.60% | + | 0.28% | + |
蜚蠊目 Blattoptera | 0.06% | + | 0.05% | + | 0.04% | + |
正蚓目 Lumbricida | - | - | - | - | 0.04% | + |
双翅目成虫 Diptera imago | - | - | 0.55% | + | - | - |
图1 三江平原不同CO2浓度处理下土壤动物优势类群类群数和密度。AC: 370 ppm CO2; EC1: 550 ppm CO2; EC2: 700 ppm CO2。不同小写字母表示不同处理之间个体密度或类群数有显著差异(P < 0.05)。
Fig. 1 Effect of CO2 concentration on soil fauna communities in Sanjiang Plain. AC, 370 ppm CO2; EC1, 550 ppm CO2; EC2, 700 ppm CO2. Different lowercase letters indicate significant difference in density or group richness among treatments (P < 0.05).
图2 三江平原不同CO2浓度处理下土壤动物群落的生态多样性指数(平均值 ± 标准差)。AC: 370 ppm CO2; EC1: 550 ppm CO2; EC2: 700 ppm CO2。不同小写字母表示不同处理之间多样性指数有显著差异(P < 0.05)。
Fig. 2 Diversity indices of soil fauna communities under different CO2 concentration in Sanjiang Plain. AC, 370 ppm CO2; EC1, 550 ppm CO2; EC2, 700 ppm CO2. Different lowercase letters indicate significant difference in diversity indices among treatments (P < 0.05).
[1] | Arora VK, Boer GJ, Christian JR, Curry CL, Denman KL, Zahariev K, Flato GM, Scinocca JF, Merryfield WJ, Lee WG (2009) The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the earth system model. Journal of Climate, 22, 6066-6088. |
[2] | Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. Journal of Climate, 26, 5289-5314. |
[3] | Bardgett RD, Wardle DA (2010) Aboveground-Belowground Linkages:Biotic Interactions, Ecosystem Processes and Global Change. Oxford University Press,Oxford. |
[4] | Bartelt-Ryser J, Joshi J, Schmid B (2005) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspective in Plant Ecology, Evolution and Systematics, 7, 27-49. |
[5] | Bever JD (2003) Soil community feedback and the coexistence of competitors: Conceptual frameworks and empirical tests. New Phytologist, 157, 465-473. |
[6] | Blagodatskaya E, Blagodatsky S, Dorodnikov M (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: Results of three CO2 enrichment experiments. Global Change Biology, 16, 836-848. |
[7] | Blankinship JC, Niklaus PA, Hungate BA (2011) A meta- analysis of responses of soil biota to global change. Oecologia, 165, 553-565. |
[8] | Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variablity. Nature, 494, 341-344. |
[9] | D’Annibale A, Larsen T, Sechi V, Cortet J, Strandberg B, Vincze E, Filser J, Audisio PA, Krogh PH (2015) Influence of elevated CO2 and GM barley on a soil mesofauna community in a mesocosm test system. Soil Biology & Biochemistry, 84, 127-136. |
[10] | Drigo B, Pijl AS, Duyts H (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, USA, 107, 10938-10942. |
[11] | Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18, 435-447. |
[12] | Field C, Jackson R, Mooney H (1995) Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell and Environment, 18, 1214-1225. |
[13] | Frouz J, Novakova A, Jones TH (2002) The potential effect of high atmospheric CO2 on soil fungi-invertebrate interactions. Global Change Biology, 8, 339-344. |
[14] | Heemsbergen DA, Berg MP, Loreau M, Van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306, 1019-1020. |
[15] | Jones D, Nguyen C, Finlay R (2009) Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant and Soil, 321, 5-33. |
[16] | Li Q, Wang P (2002) Current situation and prospect of elevated atmospheric CO2 effects on soil nematodes. Chinese Journal of Applied Ecology, 13, 1349-1351. (in Chinese with English abstract) |
[李琪, 王朋 (2002) 开放式空气CO2浓度增高对土壤线虫影响的研究现状与展望. 应用生态学报, 13, 1349-1351.] | |
[17] | Loranger GI, Pregitzer KS, King JS (2004) Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biology & Biochemistry, 36, 1521-1524. |
[18] | Ma KP, Liu YM (1994) Measurement of biotic community diversity. I. α diversity (Part 2). Biodiversity Science, 2, 231-239. (in Chinese) |
[马克平, 刘玉明 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[19] | Ni HW, Li J (1999) Biological Diversity in Honghe Nature Reserve. Heilongjiang Scientific Press, Harbin. (in Chinese) |
[倪红伟, 李君 (1999) 洪河自然保护区生物多样性. 黑龙江科技出版社, 哈尔滨.] | |
[20] | Okada H, Sakai H, Tokida T, Usui Y, Nakamura H, Hasegawa T (2014) Elevated temperature has stronger effects on the soil food web of a flooded paddy than does CO2. Soil Biology & Biochemistry, 70, 166-175. |
[21] | Piao SL, Fang JY, Huang Y (2010) The carbon balance of terrestrial ecosystem in China. China Basic Science, 12(2), 20-22, 65. (in Chinese with English abstract) |
[朴世龙, 方精云, 黄耀 (2010) 中国陆地生态系统碳收支. 中国基础科学, 12(2), 20-22, 65.] | |
[22] | Reich PB (2009) Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 326, 1399-1402. |
[23] | Reich PB, Hobbie SE, Lee T (2006) Nitrogen limitation constrains sustainability of ecosystem response. Nature, 440, 922-925. |
[24] | Reich PB, Knops J, Tilman D (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 410, 809-810. |
[25] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract) |
[邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[26] | Sticht C, Schrader S, Giesemann A, Weigel HJ (2006) Effects of elevated atmospheric CO2 and N fertilization on abundance, diversity and C-isotopic signature of collembolan communities in arable soil. Applied Soil Ecology, 34, 219-229. |
[27] | Sun LJ, Qi YC, Dong YS, Peng Q, He YT, Liu XC, Jia JQ, Cao CC (2012) Research progresses on the effects of global change on microbial community diversity of grassland soils. Progress in Geography, 31, 1715-1723. (in Chinese with English abstract) |
[孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛 (2012) 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 31, 1715-1723.] | |
[28] | Van Veen JA, Lijeroth E, Lekkerkerk LJA, Van DGSC (1991) Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecological Applications, 1, 175-181. |
[29] | Wardle DA, Verboef HA, Clarholm M (1998) Tropic relationships in the soil microfood-web: Predicting the responses to a changing global environment. Global Change Biology, 4, 713-727. |
[30] | Xu GL, Fu SL, Schleppi P, Li MH (2013) Responses of soil Collembola to long-term atmospheric CO2 enrichment in a mature temperate forest. Environmental Pollution, 173, 23-28. |
[31] | Yin WY (1992) Subtropical Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1992) 中国亚热带土壤动物. 科学出版社, 北京.] | |
[32] | Yin WY (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[15] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn