Biodiversity Science ›› 2018, Vol. 26 ›› Issue (5): 445-456.doi: 10.17520/biods.2018058

• Reviews • Previous Article     Next Article

Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective

Dandan Lang1, 2, Min Tang1, 3, Xin Zhou1, 3, *()   

  1. 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193
    2 College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083
    3 College of Plant Protection, China Agricultural University, Beijing 100193
  • Received:2018-02-15 Accepted:2018-05-11 Online:2018-09-11
  • Zhou Xin E-mail:xinzhou@cau.edu.cn
  • About author:

    # Co-first authors

Pollinators serve key ecological functions, ensuring stable ecosystems and high agricultural yields. Hence, assessing ecosystem health and effects of agricultural management would benefit from understanding and monitoring pollination networks, which involves identifications of pollinators and pollinated plants. Classic approaches of morphology-based identification of plants and pollinators can be time-consuming, labor-intensive and costly, and require highly specialized taxonomic expertise. In comparison, DNA barcoding and high-throughput sequencing technologies can provide efficient and accurate identifications of plants and their pollinators, which may facilitate construction of pollination networks. Here we propose using sequencing technologies with a PCR-free genome-skimming work frame, using "super DNA barcode" as a new method to assess plant-pollinator networks. We expect this technique to improve resolution and accuracy of taxonomic identification to help gain quantitative information for bulk samples of pollinators or pollens. Although there are technical challenges to be resolved, the robustness of the new methodology has been validated in relevant biodiversity studies, suggesting promise in constructing pollination networks.

Key words: mitochondria, chloroplast, pollen, metabarcoding, metagenome, PCR-free, quantify

Fig. 1

Construction of pollination network and comparison of analysis methods of mixed pollen composition. The contents of the blue and the green boxes refer to morphological and molecular methods, respectively. The content in the orange box is the PCR-free genome-skimming (metagenomics) approach proposed in this paper. The black network model at the bottom represents the real pollination network, and the blue, green and orange network models represent network structures constructed by the corresponding methods. Due to the limitations of various methods, the constructed networks are potentially deviated from the real network. Metabarcoding and metagenomic techniques can alleviate issues caused by intra-specific morphological variations; but some closely related species remain difficult to differentiate. Compared to metabarcoding, the metagenomic technology can reduce species bias caused by PCR and improve the accuracy in relative abundance."

Table 1

The list of 20 species of Apidae (including six species of Apis) and their mitochondrial genomes’ accession numbers in NCBI"

物种
Species
NCBI序列号
NCBI accession number
物种
Species
NCBI序列号
NCBI accession number
Apis andreniformis KF736157.1 Bombus lapidarius KT164641.1
Apis cerana NC_014295.1 Bombus lucorum KT164681.1
Apis dorsata KC294229.1 Bombus pascuorum KT164630.1
Apis florea NC_021401.1 Bombus terrestris KT368150.1
Apis mellifera sahariensis NC_035883.1 Melipona bicolor NC_004529.1
Apis nigrocincta KY799147.1 Melipona scutellaris NC_026198.1
Bombus breviceps MF478986.1 Nomada fabriciana KT164663.1
Bombus consobrinus MF995069.1 Nomada flava KT164670.1
Bombus hypocrita sapporensis NC_011923.1 Nomada flavoguttata KT164617.1
Bombus ignitus NC_010967.1 Nomada goodeniana KT164660.1

Fig. 2

The pipeline for P-distance distribution map of mitochondrial and chloroplast genomes"

Table 2

The list of 84 species of Orchidaceae (including 31 species of Dendrobium) and their chloroplast genomes’ accession numbers in NCBI"

物种
Species
NCBI序列号
NCBI accession number
物种
Species
NCBI序列号
NCBI accession number
Anoectochilus emeiensis NC_033895.1 Dendrobium parciflorum NC_035334.1
Apostasia odorata NC_030722.1 Dendrobium parishii NC_035339.1
Bletilla ochracea NC_029483.1 Dendrobium pendulum NC_029705.1
Bletilla striata NC_028422.1 Dendrobium primulinum NC_035321.1
Calanthe triplicata NC_024544.1 Dendrobium salaccense NC_035332.1
Cattleya crispata NC_026568.1 Dendrobium spatella NC_035333.1
Cattleya liliputana NC_032083.1 Dendrobium strongylanthum NC_027691.1
Cephalanthera longifolia NC_030704.1 Dendrobium wardianum NC_035329.1
Cymbidium aloifolium NC_021429.1 Dendrobium wilsonii NC_035330.1
Cymbidium ensifolium NC_028525.1 Dendrobium xichouense NC_035341.1
Cymbidium faberi NC_027743.1 Elleanthus sodiroi NC_027266.1
Cymbidium goeringii NC_028524.1 Epipactis mairei NC_030705.1
Cymbidium kanran NC_029711.1 Epipactis veratrifolia NC_030708.1
Cymbidium lancifolium NC_029712.1 Erycina pusilla NC_018114.1
Cymbidium macrorhizon NC_029713.1 Gastrochilus fuscopunctatus NC_035830.1
Cymbidium mannii NC_021433.1 Gastrochilus japonicus NC_035833.1
Cymbidium sinense NC_021430.1 Goodyera fumata NC_026773.1
Cymbidium tortisepalum NC_021431.1 Goodyera procera NC_029363.1
Cymbidium tracyanum NC_021432.1 Goodyera schlechtendaliana NC_029364.1
Cypripedium formosanum NC_026772.1 Goodyera velutina NC_029365.1
Cypripedium macranthos NC_024421.1 Habenaria pantlingiana NC_026775.1
Dendrobium aphyllum NC_035322.1 Habenaria radiata NC_035834.1
Dendrobium brymerianum NC_035323.1 Listera fugongensis NC_030711.1
Dendrobium catenatum NC_024019.1 Ludisia discolor NC_030540.1
Dendrobium chrysanthum NC_035336.1 Masdevallia coccinea NC_026541.1
Dendrobium chrysotoxum NC_028549.1 Masdevallia picturata NC_026777.1
Dendrobium crepidatum NC_035331.1 Neottia ovate NC_030712.1
Dendrobium denneanum NC_035324.1 Neottia pinetorum NC_030710.1
Dendrobium devonianum NC_035325.1 Oberonia japonica NC_035832.1
Dendrobium ellipsophyllum NC_035340.1 Paphiopedilum armeniacum NC_026779.1
Dendrobium exile NC_035343.1 Paphiopedilum niveum NC_026776.1
Dendrobium falconeri NC_035326.1 Pelatantheria scolopendrifolia NC_035829.1
Dendrobium fanjingshanense NC_035344.1 Phalaenopsis equestris NC_017609.1
Dendrobium fimbriatum NC_035342.1 Phragmipedium longifolium NC_028149.1
Dendrobium gratiosissimum NC_035327.1 Sobralia callosa NC_028147.1
Dendrobium henryi NC_035335.1 Thrixspermum japonicum NC_035831.1
Dendrobium hercoglossum NC_035328.1 Vanilla aphylla NC_035320.1
Dendrobium huoshanense NC_028430.1 Vanilla planifolia NC_026778.1
Dendrobium jenkinsii NC_035337.1 Sobralia aff. bouchei NC_028209.1
Dendrobium lohohense NC_035338.1 Phalaenopsis hybrid NC_025593.1
Dendrobium moniliforme NC_035154.1 Phalaenopsis aphrodite formosana NC_007499.1
Dendrobium nobile NC_029456.1 Oncidium hybrid NC_014056.1

Fig. 3

The P-distance map among species and genera of the mitochondrial genomes and the chloroplast genomes. (a) The P-distance map of 13 protein-coding genes in the mitochondrial genomes among six species in Apis; (b) The P-distance map of 13 protein-coding genes in the mitochondrial genomes among 20 species in Apidae; (c) The P-distance map of 67 protein-coding genes in the chloroplast genomes among 31 species in Dendrobium; (d) The P-distance map of 67 protein-coding genes in the chloroplast genomes among 84 species in Orchidaceae. In panels a & b, the orange area is the location of the COI barcode, and the orange dotted circle represents the median value of the COI barcode’s P-distance. In panels c & d, the orange area is the location of the matK barcode, the purple area is the location of the rbcL barcode, and the orange dotted circle represents the median value of the matK barcode’s P-distance, the purple dotted circle represents the median value of the rbcL barcode’s P-distance."

1 Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980.
2 Arif IA, Khan HA, Al Sadoon M, Shobrak M (2011) Limited efficiency of universal mini-barcode primers for DNA amplification from desert reptiles, birds and mammals. Genetics and Molecular Research, 10, 3559-3564.
3 Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology, 85, 2408-2421.
4 Aziz AN, Sauve RJ (2008) Genetic mapping of Echinacea purpurea via individual pollen DNA fingerprinting. Molecular Breeding, 21, 227-232.
5 Bagella S, Satta A, Floris I, Caria MC, Rossetti I, Podani J (2013) Effects of plant community composition and flowering phenology on honeybee foraging in Mediterranean sylvo-pastoral systems. Applied Vegetation Science, 16, 689-697.
6 Bambara SB (1991) Using pollen to identify honey. American Bee Journal, 131, 242-243.
7 Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: The architecture of biodiversity. Annual Review of Ecology, Evolution and Systematics, 38, 567-593.
8 Bell KL, Julie F, Kevin SB, Emily KD, David G, Brice L, Connor M, Berry JB (2017) Applying pollen DNA metabarcoding to the study of plant-pollinator interactions. Applications in Plant Sciences, 5, 1600124.
9 Bell KL, Kevin SB, Kazufusa CO, Roman A, Berry JB (2016) Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Science International: Genetics, 21, 110-116.
10 Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189.
11 Binladen J, Gilbert MT, Bollback JP, Panitz F, Bendixen C, Nielsen R, Willerslev E (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE, 2, e197.
12 Bosch J, González AM, Rodrigo A, Navarro D (2009) Plant- pollinator networks: Adding the pollinator’s perspective. Ecology Letters, 12, 409-419.
13 Bruni I, Galimberti A, Caridi L, Scaccabarozzi D, Mattia DF, Casiraghi M, Labra M (2015) A DNA barcoding approach to identify plant species in multiflower honey. Food Chemistry, 170, 308-315.
14 Cameron SA, Hines HM, Williams PH (2007) A comprehensive phylogeny of the bumble bees (Bombus). Biological Journal of the Linnean Society, 91, 161-188.
15 CBOL Plant Working Group (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA, 106, 12794-12797.
16 Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5, 1-8.
17 China Plant BOL Group, Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences, USA, 108, 19641-19646.
18 Coissac E, Hollingsworth PM, Lavergne S, Taberlet P (2016) From barcodes to genomes: Extending the concept of DNA barcoding. Molecular Ecology, 25, 1423-1428.
19 Danforth BN, Cardinal S, Praz C, Almeida EA, Michez D (2013) The impact of molecular data on our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58, 57-78.
20 Escriche I, Kadar M, Juan-Borrás M, Domenech E (2011) Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Research International, 44, 1504-1513.
21 Fang Q, Huang SQ (2014) Progress in pollination ecology at the community level. Chinese Science Bulletin, 59, 449-458. (in Chinese with English abstract)
[方强, 黄双全 (2014) 群落水平上传粉生态学的研究进展. 科学通报, 59, 449-458.]
22 Gómez-Rodríguez C, Crampton-Platt A, Timmermans MJTN, Baselga A, Vogler AP (2015) Validating the power of mitochondrial metagenomics for community ecology and phylogenetics of complex assemblages. Methods in Ecology and Evolution, 6, 883-894.
23 Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ (2011) Environmental Barcoding: A next-generation sequencing approach for biomonitoring Applications Using River Benthos. PLoS ONE, 6, e17497.
24 Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313-321.
25 Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE, 6, e19254.
26 Hollingsworth PM, Li DZ, van der Bank M, Twyford AD (2016) Telling plant species apart with DNA: From barcodes to genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150338.
27 Holt KA, Bennett KD (2014) Principles and methods for automated palynology. New Phytologist, 203, 735-742.
28 Janzen DH, Hallwachs W, Burns J, Solis MA, Woodley NE (2009) Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Molecular Ecology Resources, 9, 1-26.
29 Kaiser-Bunbury CN, James M, Andrew EW, Terence V, Ronny G, Jens MO, Nico B (2017) Ecosystem restoration strengthens pollination network resilience and function. Nature, 542, 223-227.
30 Keller A, Danner N, Grimmer G, Ankenbrand M, von der Ohe K, von der Ohe W, Rost S, Härtel S, Steffan-Dewenter I (2015) Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biology, 17, 558-566.
31 Khansari E, Zarre S, Alizadeh K, Attar F, Aghabeigi F, Salmaki Y (2012) Pollen morphology of Campanula (Campanulaceae) and allied genera in Iran with special focus on its systematic implication. Flora-Morphology, Distribution, Functional Ecology of Plants, 207, 203-211.
32 King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution, 4, 811-818.
33 Klein AM, Vaissière BE, Cane JH, Steffandewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303-313.
34 Lahaye R, Savolainen V, Duthoit S, Maurin O, van der Bank M (2008) A test of psbK-psbI and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park as a model system (South Africa)..
35 Li XW, Yang Y, Henry RJ, Rossetto M, Wang YT, Chen SL (2015) Plant DNA barcoding: From gene to genome. Biological Reviews, 90, 157-166.
36 Li YW, Zhou X, Feng G, Hu HY, Niu LM, Hebert PD, Huang DW (2010) COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Molecular Ecology Resources, 10, 31-40.
37 Liu SL, Li YY, Lu JL, Su X, Tang M, Zhang R, Zhou LL, Zhou CR, Yang Q, Ji YQ, Yu DW, Zhou X (2013) SOAPBarcode: Revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods in Ecology and Evolution, 4, 1142-1150.
38 Liu SL, Wang X, Xie L, Tan MH, Li ZY, Su X, Zhang H, Misof B, Kjer KM, Tang M, Niehuis O, Jiang H, Zhou X (2016) Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Molecular Ecology Resources, 16, 470.
39 Liu SL, Yang CT, Zhou CR, Zhou X (2017) Filling reference gaps via assembling DNA barcodes using high-throughput sequencing—moving toward barcoding the world. GigaScience, 6, 1-8.
40 Loreau M, Mazancourt CD (2013) Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106-115.
41 Macher JN, Zizka VMA, Weigand AM, Leese F (2017) A simple centrifugation protocol for metagenomic studies increases mitochondrial DNA yield by two orders of magnitude. Methods in Ecology and Evolution, 7, 1071-1075.
42 Matsuki Y, Isagi Y, Suyama Y (2007) The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. Molecular Ecology Notes, 7, 194-198.
43 Murray TE, Úna F, Brown MJF, Paxton RJ (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics, 9, 653-666.
44 Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 7, 84.
45 Pecnikar ZF, Buzan EV (2014) 20 years since the introduction of DNA barcoding: From theory to application. Journal of Applied Genetics, 55, 43-52.
46 Piñol J, Mir G, Gomez-Polo P, Agustí N (2015) Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Molecular Ecology Resources, 15, 819-830.
47 Popic TJ, Wardle GM, Davila YC (2013) Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecology, 38, 76-86.
48 Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, Mariette J, Pellizzari C, Iribar A, Etienne R, Taberlet P, Vidal M, Winterton P, Zinger L, Andalo C (2016) Using metabarcoding to reveal and quantify plant-pollinator interactions. Scientific Reports, 6, 27282.
49 Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345-353.
50 Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature, 540, 220-229.
51 Rahl M (2008) Microscopic identification and purity determination of pollen grains. Humana Press, 138, 263-269.
52 Raphaël C, Tony D, Alice V, Nicolas R, Jean-Claude R, Aurélie B, Taberlet P, Pont D (2016) Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE, 11, e0157366.
53 Rasmont P, Coppée A, Michez D, Meulemeester TD (2008) An overview of the Bombus terrestris (L.1758) subspecies (Aymenoptera: Apidae). Annales-Societe Entomologique de France, 44, 243-250.
54 Richardson RT, Lin CH, Quijia JO, Riusech NS, Goodell K, Johnson RM (2015a) Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Applications in Plant Sciences, 3, 1500043.
55 Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM (2015b) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences, 3, 1400066.
56 Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Potts SG, Viana BF (2008) Landscape effects on crop pollination services: Are there general patterns? Ecology Letters, 11, 499-515.
57 Ruhsam M, Rai HS, Mathews S, Ross TG, Graham SW, Raubeson LA, Mei W, Thomas PI, Gardner MF, Ennos RA, Hollingsworth PM (2015) Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Molecular Ecology Resources, 15, 1067-1078.
58 Schmidt S, Schmid-Egger C, Moriniere J, Haszprunar G, Hebert PDN (2015) DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim). Molecular Ecology Resources, 15, 985-1000.
59 Sheffield CS, Hebert PDN, Kevan P, Packer L (2009) DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular Ecology Resources, 9, 196-207.
60 Shi ZY, Yang CQ, Hao MD, Wang XY, Ward RD, Zhang AB (2018) FuzzyID2: A software package for large dataset species identification via barcoding and metabarcoding using Hidden Markov models and fuzzy set methods. Molecular Ecology Resources, 18, 666-675.
61 Smart MD, Cornman RS, Iwanowicz DD, McDermott- Kubeczko M, Pettis JS, Spivak MS, Otto CRV (2017) A comparison of honey bee-collected pollen from working agricultural lands using light microscopy and its metabarcoding. Environmental Entomology, 46, 38-49.
62 Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences, USA, 103, 3657-3662.
63 Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 2045-2050.
64 Tang M, Hardman CJ, Ji YQ, Meng GL, Liu SL, Tan MH, Yang SZ, Moss ED, Wang JX, Yang CX, Bruce C, Nevard T, Potts SG, Zhou X, Yu DW (2015) High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 6, 1034-1043.
65 Tang M, Tan MH, Meng GL, Yang SZ, Su X, Liu SL, Song WH, Li YY, Wu Q, Zhang AB, Zhou X (2014) Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 42, e166.
66 Tang M, Yi TS, Wang X, Tan MH, Zhou X (2013) The application of metabarcoding technology in identification of plant species diversity. Plant Diversity and Resources, 35, 769-773. (in Chinese with English abstract)
[唐敏, 伊廷双, 王欣, 谭美华, 周欣 (2013) Metabarcoding技术在植物鉴定和多样性研究中的应用. 植物分类与资源学报, 35, 769-773.]
67 Weiner CN, Werner M, Linsenmair KE, Blüthgen N (2014) Land-use impacts on plant-pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology, 95, 466-474.
68 Whitlock BA, Hale AM, Groff PA (2010) Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode. PLoS ONE, 5, e11533.
69 Widmer A, Cozzolino S, Pellegrino G, Soliva M, Dafni A (2000) Molecular analysis of orchid pollinaria and pollinaria-remains found on insects. Molecular Ecology, 9, 1911-1914.
70 Wilson EE, Sidhu CS, LeVan KE, Holway DA (2010) Pollen foraging behavior of solitary Hawaiian bees revealed through molecular pollen analysis. Molecular Ecology, 19, 4823-4829.
71 Yamasaki YK, Nieman CC, Chang AN, Collier TC, Main BJ, Lee Y (2016) Improved tools for genomic DNA library construction of small insects. https://f1000research.com/posters/5-211.
72 Yu DW, Ji YQ, Emerson BC, Wang XY, Ye CX, Yang CY, Ding ZL (2012) Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 3, 613-623.
73 Zhang AB, Hao MD, Yang CQ, Shi ZY (2017) BarcodingR: An integrated R package for species identification using DNA barcodes. Methods in Ecology and Evolution, 8, 627-634.
74 Zhou X, Li YY, Liu SL, Yang Q, Su X, Zhou LL, Tang M, Fu RB, Li JG, Huang QF (2013) Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience, 2, 4.
[1] 青 平赵 fan shima Xi ruili yu tianwang Xiang ZHAO. (2020) Study of NPH3/RPT2-LIKE (NRL) Family Proteins in Phototropin Signaling Pathway . Chin Bull Bot, 55(2): 0-0.
[2] Weng Zhuoxian, Huang Jiaqiong, Zhang Shihao, Yu Kaichun, Zhong Fusheng, Huang Xunhe, Zhang Bin. (2019) Genetic diversity and population structure of black-bone chickens in China revealed by mitochondrial COI gene sequences . Biodiv Sci, 27(6): 667-676.
[3] Tang Min, Zou Yi, Su Qinzhi, Zhou Xin. (2019) A new perspective on landscape impact in bee populations: Considering the bee gut microbiome . Biodiv Sci, 27(5): 516-525.
[4] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. (2019) Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems . Biodiv Sci, 27(5): 491-504.
[5] Liu Shanlin. (2019) DNA barcoding and emerging reference construction and data analysis technologies . Biodiv Sci, 27(5): 526-533.
[6] Li Meng, Wei Tingting, Shi Boyang, Hao Xiyang, Xu Haigen, Sun Hongying. (2019) Biodiversity monitoring of freshwater benthic macroinvertebrates using environmental DNA . Biodiv Sci, 27(5): 480-490.
[7] Zhao Yuemei, Yang Zhenyan, Zhao Yongping, Li Xiaoling, Zhao Zhixin, Zhao Guifang. (2019) Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae . Chin Bull Bot, 54(4): 441-454.
[8] Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen. (2019) Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators . Biodiv Sci, 27(3): 306-313.
[9] Hu Ying, Wang Xi, Zhang Xinxin, Zhou Wei, Chen Xiaoyang, Hu Xinsheng. (2019) Advancing phylogeography with chloroplast DNA markers . Biodiv Sci, 27(2): 219-234.
[10] Yang Hao, Liu Chen, Wang Zhifei, Hu Xiuli, Wang Tai. (2019) Advances in the Regulatory Mechanisms of Pollen Response to Heat Stress in Crops . Chin Bull Bot, 54(2): 157-167.
[11] Wang Xiaoyue,Zhu Xinxin,Yang Juan,Liu Yunjing,Tang Xiaoxin. (2019) Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume) . Biodiv Sci, 27(2): 159-167.
[12] Siqi Liang, Xianchun Zhang, Ran Wei. (2019) Integrative taxonomy resolved species delimitation in a fern complex: A case study of the Asplenium coenobiale complex . Biodiv Sci, 27(11): 1205-1220.
[13] Qin Tong, Huang Zhen, Kang Zhenhui. (2019) Regulatory Mechanism of Thioredoxin (Trx) in Chloroplasts . Chin Bull Bot, 54(1): 119-132.
[14] Liu Wei, Tong Yong’ao, Bai Jie. (2018) Bioinformatics Analysis of tRNA-derived Fragments in Rice Male Gametophyte Development . Chin Bull Bot, 53(5): 625-633.
[15] Jannathan Mamut,Xiaojun Cheng,Dunyan Tan. (2018) Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb . Biodiv Sci, 26(5): 498-509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed