Biodiv Sci ›› 2024, Vol. 32 ›› Issue (1): 23371. DOI: 10.17520/biods.2023371 cstr: 32101.14.biods.2023371
• Original Papers: Plant Diversity • Previous Articles Next Articles
Xiaoqin Lü1,2,3(), Yang Li1,2,3(), Shunyu Wang1,2,3(), Renxiu Yao1,2,3(), Xiaoyue Wang1,2,3,*()()
Received:
2023-10-04
Accepted:
2023-12-04
Online:
2024-01-20
Published:
2023-12-09
Contact:
*E-mail: wang.xiaoyue1989@163.com
Xiaoqin Lü, Yang Li, Shunyu Wang, Renxiu Yao, Xiaoyue Wang. No significant differences found in chemical traits of pollen and nectar located in different positions across Aconitum piepunense racemes[J]. Biodiv Sci, 2024, 32(1): 23371.
Fig. 1 Distribution of basal, middle and distal flowers in the raceme of Aconitum piepunense (A); Bombus friseanus (B) and B. religiosus (D) were visiting flowers of A. piepunense, mainly absorbing nectar and pollinating efficiently; The solitary bees mainly foraged on the pollen (C, marked with red arrow); The full fruit of A. piepunense (E).
Fig. 2 Comparison of single flower visit time (A) and flower visit frequency (B) among the basal, middle and distal flowers in the raceme of Aconitum piepunense (mean ± SE). The same letter indicates that there is no significant difference among different positions (P > 0.05).
化学性状 Chemical properties | 花粉 Pollen | 花蜜 Nectar | ||||
---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | 相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | |
初级代谢物 Primary metabolites | ||||||
蛋白质类 Protein | 531.43 ± 71.40 | 11.801 | 21 ± 2 | 0.21± 0.07 | 0.091 | 3 ± 1 |
脂类 Lipid | 12.35 ± 16.23 | 0.274 | 1 ± 1 | |||
核酸类 Nucleic acid | 82.68 ± 11.80 | 1.836 | 12 ± 1 | 1.69 ± 1.72 | 0.721 | 4 ± 1 |
糖类 Carbohydrate | 0.26 ± 0.14 | 0.006 | 2 ± 1 | 3.21 ± 1.36 | 1.373 | 5 ± 0 |
次级代谢物 Secondary metabolites | ||||||
生物碱类 Alkaloid | 1,629.39 ± 580.33 | 36.182 | 195 ± 11 | 57.74 ± 11.53 | 24.685 | 92 ± 6 |
酚类 Phenol | 1,483.18 ± 324.16 | 32.935 | 379 ± 13 | 117.72 ± 8.48 | 50.324 | 183 ± 10 |
萜类 Terpenoid | 764.00 ± 253.51 | 16.965 | 440 ± 14 | 53.35 ± 4.51 | 22.806 | 214 ± 15 |
Table 1 The relative content of chemical profiles (mean ± SE) in the pollen and nectar of Aconitum piepunense, and the percent of response value of one chemical class to the total response values of all chemical classes, and the classes of chemical profiles (mean ± SE)
化学性状 Chemical properties | 花粉 Pollen | 花蜜 Nectar | ||||
---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | 相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | |
初级代谢物 Primary metabolites | ||||||
蛋白质类 Protein | 531.43 ± 71.40 | 11.801 | 21 ± 2 | 0.21± 0.07 | 0.091 | 3 ± 1 |
脂类 Lipid | 12.35 ± 16.23 | 0.274 | 1 ± 1 | |||
核酸类 Nucleic acid | 82.68 ± 11.80 | 1.836 | 12 ± 1 | 1.69 ± 1.72 | 0.721 | 4 ± 1 |
糖类 Carbohydrate | 0.26 ± 0.14 | 0.006 | 2 ± 1 | 3.21 ± 1.36 | 1.373 | 5 ± 0 |
次级代谢物 Secondary metabolites | ||||||
生物碱类 Alkaloid | 1,629.39 ± 580.33 | 36.182 | 195 ± 11 | 57.74 ± 11.53 | 24.685 | 92 ± 6 |
酚类 Phenol | 1,483.18 ± 324.16 | 32.935 | 379 ± 13 | 117.72 ± 8.48 | 50.324 | 183 ± 10 |
萜类 Terpenoid | 764.00 ± 253.51 | 16.965 | 440 ± 14 | 53.35 ± 4.51 | 22.806 | 214 ± 15 |
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 511.49 ± 42.34a | 552.74 ± 124.82a | 530.06 ± 41.72a | 0.402 | 2 | 0.818 | |
脂类 Lipid | 18.26 ± 12.97a | 15.03 ± 26.00a | 3.77± 6.00a | 1.183 | 2 | 0.553 | |
核酸类 Nucleic acid | 82.42 ± 7.98a | 78.04 ± 20.35a | 87.58 ± 3.25a | 0.840 | 2 | 0.657 | |
糖类 Carbohydrate | 0.24 ± 0.13a | 0.24 ± 0.22a | 0.29 ± 0.11a | 0.176 | 2 | 0.916 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 1,511.92 ± 382.731a | 1,955.34 ± 722.05a | 1,420.90 ± 658.81a | 1.336 | 2 | 0.513 |
酚类 Phenol | 黄酮类 Flavonoid | 764.42 ± 69.01a | 891.47 ± 316.12a | 1,015.04 ± 230.25a | 1.792 | 2 | 0.408 |
醌类 Quinone | 364.93 ± 23.91a | 386.44 ± 128.43a | 390.26 ± 61.44a | 0.161 | 2 | 0.923 | |
苯丙烷类 Phenylpropanoid | 128.98 ± 6.70a | 186.97 ± 51.13a | 220.84 ± 78.17a | 4.430 | 2 | 0.109 | |
酚类 Phenol | 24.72 ± 0.29b | 28.96 ± 0.74a | 28.57 ± 2.49a | 14.461 | 2 | < 0.001 | |
鞣质类 Tannin | 4.45 ± 1.30a | 7.01 ± 0.68a | 6.46 ± 3.46a | 2.317 | 2 | 0.314 | |
萜类Terpenoid | 萜类 Terpenoid | 580.16 ± 75.67a | 619.22 ± 321.59a | 586.63 ± 289.76a | 0.041 | 2 | 0.980 |
甾体类 Steroid | 148.13 ± 41.41a | 171.98 ± 61.02a | 185.87 ± 25.71a | 1.075 | 2 | 0.584 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 21 ± 2a | 21 ± 4a | 20 ± 1a | 0.039 | 2 | 0.981 | |
脂类 Lipid | 1 ± 0a | 1 ± 1a | 1 ± 1a | 3.000 | 2 | 0.223 | |
核酸类 Nucleic acid | 11 ± 1a | 12 ± 0a | 11 ± 1a | 1.200 | 2 | 0.549 | |
糖类 Carbohydrate | 2 ± 1a | 2 ± 1a | 2 ± 1a | 0.286 | 2 | 0.867 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 202 ± 2a | 188 ± 12a | 194 ± 13a | 2.501 | 2 | 0.286 |
酚类 Phenol | 黄酮类 Flavonoid | 158 ± 9a | 151 ± 11a | 156 ± 6a | 0.757 | 2 | 0.685 |
醌类 Quinone | 33 ± 0a | 33 ± 5a | 35 ± 3a | 0.686 | 2 | 0.710 | |
苯丙烷类 Phenylpropanoid | 147 ± 3a | 148 ± 4a | 139 ± 4b | 8.807 | 2 | 0.012 | |
酚类 Phenol | 39 ± 1a | 37 ± 2a | 39 ± 2a | 1.313 | 2 | 0.519 | |
鞣质类 Tannin | 6 ± 1a | 7 ± 3a | 7 ± 1a | 1.282 | 2 | 0.527 | |
萜类 Terpenoid | 萜类 Terpenoid | 284 ± 5a | 288 ± 12a | 292 ± 9a | 1.043 | 2 | 0.593 |
甾体类 Steroid | 158 ± 6a | 148 ± 11a | 150 ± 1a | 3.202 | 2 | 0.202 |
Table 2 Comparison of chemical relative content and classes (mean ± SE) among the pollen of basal, middle and distal flowers in the racemeof Aconitum piepunense (generalized linear model, GLM). Different lowercase letters indicate that the relative content or number of species of the chemical species is significantly different between the flowers at different positions, and the chemical name of the chemical class is indicated in bold font.
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 511.49 ± 42.34a | 552.74 ± 124.82a | 530.06 ± 41.72a | 0.402 | 2 | 0.818 | |
脂类 Lipid | 18.26 ± 12.97a | 15.03 ± 26.00a | 3.77± 6.00a | 1.183 | 2 | 0.553 | |
核酸类 Nucleic acid | 82.42 ± 7.98a | 78.04 ± 20.35a | 87.58 ± 3.25a | 0.840 | 2 | 0.657 | |
糖类 Carbohydrate | 0.24 ± 0.13a | 0.24 ± 0.22a | 0.29 ± 0.11a | 0.176 | 2 | 0.916 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 1,511.92 ± 382.731a | 1,955.34 ± 722.05a | 1,420.90 ± 658.81a | 1.336 | 2 | 0.513 |
酚类 Phenol | 黄酮类 Flavonoid | 764.42 ± 69.01a | 891.47 ± 316.12a | 1,015.04 ± 230.25a | 1.792 | 2 | 0.408 |
醌类 Quinone | 364.93 ± 23.91a | 386.44 ± 128.43a | 390.26 ± 61.44a | 0.161 | 2 | 0.923 | |
苯丙烷类 Phenylpropanoid | 128.98 ± 6.70a | 186.97 ± 51.13a | 220.84 ± 78.17a | 4.430 | 2 | 0.109 | |
酚类 Phenol | 24.72 ± 0.29b | 28.96 ± 0.74a | 28.57 ± 2.49a | 14.461 | 2 | < 0.001 | |
鞣质类 Tannin | 4.45 ± 1.30a | 7.01 ± 0.68a | 6.46 ± 3.46a | 2.317 | 2 | 0.314 | |
萜类Terpenoid | 萜类 Terpenoid | 580.16 ± 75.67a | 619.22 ± 321.59a | 586.63 ± 289.76a | 0.041 | 2 | 0.980 |
甾体类 Steroid | 148.13 ± 41.41a | 171.98 ± 61.02a | 185.87 ± 25.71a | 1.075 | 2 | 0.584 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 21 ± 2a | 21 ± 4a | 20 ± 1a | 0.039 | 2 | 0.981 | |
脂类 Lipid | 1 ± 0a | 1 ± 1a | 1 ± 1a | 3.000 | 2 | 0.223 | |
核酸类 Nucleic acid | 11 ± 1a | 12 ± 0a | 11 ± 1a | 1.200 | 2 | 0.549 | |
糖类 Carbohydrate | 2 ± 1a | 2 ± 1a | 2 ± 1a | 0.286 | 2 | 0.867 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 202 ± 2a | 188 ± 12a | 194 ± 13a | 2.501 | 2 | 0.286 |
酚类 Phenol | 黄酮类 Flavonoid | 158 ± 9a | 151 ± 11a | 156 ± 6a | 0.757 | 2 | 0.685 |
醌类 Quinone | 33 ± 0a | 33 ± 5a | 35 ± 3a | 0.686 | 2 | 0.710 | |
苯丙烷类 Phenylpropanoid | 147 ± 3a | 148 ± 4a | 139 ± 4b | 8.807 | 2 | 0.012 | |
酚类 Phenol | 39 ± 1a | 37 ± 2a | 39 ± 2a | 1.313 | 2 | 0.519 | |
鞣质类 Tannin | 6 ± 1a | 7 ± 3a | 7 ± 1a | 1.282 | 2 | 0.527 | |
萜类 Terpenoid | 萜类 Terpenoid | 284 ± 5a | 288 ± 12a | 292 ± 9a | 1.043 | 2 | 0.593 |
甾体类 Steroid | 158 ± 6a | 148 ± 11a | 150 ± 1a | 3.202 | 2 | 0.202 |
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 0.22 ± 0.11a | 0.18 ± 0.01a | 0.22 ± 0.04a | 0.365 | 2 | 0.833 | |
核酸类 Nucleic acid | 2.15 ± 2.93a | 0.66 ± 0.05a | 1.91 ± 0.51a | 0.823 | 2 | 0.663 | |
糖类 Carbohydrate | 4.59 ± 1.38a | 2.31 ± 0.14b | 2.43 ± 0.07b | 11.914 | 2 | 0.003 | |
次级代谢物 Secondary metabolites | |||||||
生物碱 Alkaloids | 生物碱 Alkaloid | 64.41 ± 6.54a | 52.49 ± 14.55a | 54.57 ± 14.39a | 1.539 | 2 | 0.463 |
酚类 Phenol | 黄酮类 Flavonoid | 72.34 ± 12.70a | 65.80 ± 1.58a | 62.16 ± 1.887a | 2.391 | 2 | 0.303 |
醌类 Quinone | 16.74 ± 1.61a | 20.33 ± 2.13a | 19.53 ± 1.92a | 5.500 | 2 | 0.064 | |
苯丙烷类 Phenylpropanoid | 25.25 ± 0.29a | 22.90 ± 0.00b | 21.96 ± 0.73b | 69.09 | 2 | < 0.001 | |
酚类 Phenol | 9.13 ± 1.43a | 7.45 ± 0.67a | 8.43 ± 1.22a | 2.227 | 2 | 0.328 | |
鞣质类 Tannin | 0.31 ± 0.06a | 0.29 ± 0.08a | 0.21 ± 0.05a | 4.454 | 2 | 0.108 | |
萜类 Terpenoid | 萜类 Terpenoid | 40.84 ± 3.63a | 36.45 ± 1.94a | 38.23 ± 0.75a | 3.909 | 2 | 0.142 |
甾体类 Steroid | 16.64 ± 0.13a | 12.55 ± 1.07b | 13.89 ± 1.93b | 12.992 | 2 | 0.002 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 3 ± 1a | 3 ± 1a | 4 ± 0a | 6.000 | 2 | 0.050 | |
核酸类 Nucleic acid | 3 ± 1b | 5 ± 0a | 5 ± 1a | 9.375 | 2 | 0.009 | |
糖类 Carbohydrate | 5 ± 0a | 5 ± 1a | 5 ± 1a | 1.429 | 2 | 0.490 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 94 ± 9a | 94 ± 2a | 89 ± 5a | 1.200 | 2 | 0.549 |
酚类 Phenol | 黄酮类 Flavonoid | 61 ± 2a | 55 ± 0a | 60 ± 7a | 1.994 | 2 | 0.369 |
醌类 Quinone | 14 ± 4a | 16 ± 1a | 14 ± 1a | 0.798 | 2 | 0.671 | |
苯丙烷类 Phenylpropanoid | 87 ± 5a | 81 ± 1a | 78 ± 8a | 3.861 | 2 | 0.145 | |
酚类 Phenol | 26 ± 2a | 24 ± 4a | 25 ± 1a | 2.095 | 2 | 0.351 | |
鞣质类 Tannin | 3 ± 1a | 2 ± 1a | 2 ± 1a | 0.813 | 2 | 0.666 | |
萜类 Terpenoid | 萜类 Terpenoid | 160 ± 6a | 142 ± 4b | 145 ± 4b | 20.518 | 2 | < 0.001 |
甾体类 Steroid | 72 ± 3a | 63 ± 4b | 60 ± 6b | 12.868 | 2 | 0.002 |
Table 3 Comparison of chemical relative content and classes (mean ± SE) among the nectar of basal, middle and distal flowers in the raceme of Aconitum piepunense (generalized linear model, GLM). Different lowercase letters indicate that the relative content or number of species of the chemical species is significantly different between the flowers at different positions, and the chemical name of the chemical class is indicated in bold font.
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 0.22 ± 0.11a | 0.18 ± 0.01a | 0.22 ± 0.04a | 0.365 | 2 | 0.833 | |
核酸类 Nucleic acid | 2.15 ± 2.93a | 0.66 ± 0.05a | 1.91 ± 0.51a | 0.823 | 2 | 0.663 | |
糖类 Carbohydrate | 4.59 ± 1.38a | 2.31 ± 0.14b | 2.43 ± 0.07b | 11.914 | 2 | 0.003 | |
次级代谢物 Secondary metabolites | |||||||
生物碱 Alkaloids | 生物碱 Alkaloid | 64.41 ± 6.54a | 52.49 ± 14.55a | 54.57 ± 14.39a | 1.539 | 2 | 0.463 |
酚类 Phenol | 黄酮类 Flavonoid | 72.34 ± 12.70a | 65.80 ± 1.58a | 62.16 ± 1.887a | 2.391 | 2 | 0.303 |
醌类 Quinone | 16.74 ± 1.61a | 20.33 ± 2.13a | 19.53 ± 1.92a | 5.500 | 2 | 0.064 | |
苯丙烷类 Phenylpropanoid | 25.25 ± 0.29a | 22.90 ± 0.00b | 21.96 ± 0.73b | 69.09 | 2 | < 0.001 | |
酚类 Phenol | 9.13 ± 1.43a | 7.45 ± 0.67a | 8.43 ± 1.22a | 2.227 | 2 | 0.328 | |
鞣质类 Tannin | 0.31 ± 0.06a | 0.29 ± 0.08a | 0.21 ± 0.05a | 4.454 | 2 | 0.108 | |
萜类 Terpenoid | 萜类 Terpenoid | 40.84 ± 3.63a | 36.45 ± 1.94a | 38.23 ± 0.75a | 3.909 | 2 | 0.142 |
甾体类 Steroid | 16.64 ± 0.13a | 12.55 ± 1.07b | 13.89 ± 1.93b | 12.992 | 2 | 0.002 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 3 ± 1a | 3 ± 1a | 4 ± 0a | 6.000 | 2 | 0.050 | |
核酸类 Nucleic acid | 3 ± 1b | 5 ± 0a | 5 ± 1a | 9.375 | 2 | 0.009 | |
糖类 Carbohydrate | 5 ± 0a | 5 ± 1a | 5 ± 1a | 1.429 | 2 | 0.490 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 94 ± 9a | 94 ± 2a | 89 ± 5a | 1.200 | 2 | 0.549 |
酚类 Phenol | 黄酮类 Flavonoid | 61 ± 2a | 55 ± 0a | 60 ± 7a | 1.994 | 2 | 0.369 |
醌类 Quinone | 14 ± 4a | 16 ± 1a | 14 ± 1a | 0.798 | 2 | 0.671 | |
苯丙烷类 Phenylpropanoid | 87 ± 5a | 81 ± 1a | 78 ± 8a | 3.861 | 2 | 0.145 | |
酚类 Phenol | 26 ± 2a | 24 ± 4a | 25 ± 1a | 2.095 | 2 | 0.351 | |
鞣质类 Tannin | 3 ± 1a | 2 ± 1a | 2 ± 1a | 0.813 | 2 | 0.666 | |
萜类 Terpenoid | 萜类 Terpenoid | 160 ± 6a | 142 ± 4b | 145 ± 4b | 20.518 | 2 | < 0.001 |
甾体类 Steroid | 72 ± 3a | 63 ± 4b | 60 ± 6b | 12.868 | 2 | 0.002 |
生物碱类 Alkaloids | 化学式 Chemical formula | 基部花 Basal flower (%) | 中部花 Middle flower (%) | 顶部花 Distal flower (%) |
---|---|---|---|---|
卡米车灵(多根乌头碱) Carmichaeline | C22H35NO4 | 51.77 | 59.10 | 40.59 |
塔拉萨敏 Talatisamine | C24H39NO5 | 14.50 | 13.74 | 12.67 |
去氢胡椒杀虫胺 Dehydropepper insecticide | C22H31NO3 | 5.58 | 6.45 | 3.38 |
N-氧-对叶百部碱 N-oxy-tuberostemonine | C22H33NO5 | 3.95 | - | 9.39 |
荜茇壬二烯哌啶 Pipernonaline | C21H27NO3 | 2.30 | 2.11 | 1.88 |
Zanthosimuline | C20H23NO2 | 1.53 | 1.44 | 1.28 |
Acsonine | C31H41NO8 | 1.51 | 0.63 | - |
半边莲碱(山梗菜碱) Lobeline | C22H27NO2 | 1.39 | 1.35 | 0.60 |
裸翠雀亭 Denudatine | C22H33NO2 | 1.13 | 0.76 | 2.01 |
高乌宁碱 Lappaconine | C23H37NO6 | 0.93 | 0.59 | 0.76 |
平贝碱丙 Pingbeimine C | C27H43NO6 | 0.90 | 1.17 | 1.22 |
苦木碱A 1-(ethoxycarbonyl)-β-carboline | C28H24N4O2 | 0.74 | 0.47 | - |
大叶桉亭 Robustine | C12H9NO3 | 0.48 | 0.48 | - |
1-甲酯基-β-咔啉 1-carbomethoxy-β-carboline | C13H10N2O2 | 0.35 | 0.24 | - |
几内亚胡椒碱 (2E,4E,12E)-13-(benzo[d][1,3]dioxol-5-yl)-N- isobutyltrideca-2,4,12-trienamide | C24H33NO3 | 0.29 | 0.31 | - |
麦角辛 Ergosine | C30H37N5O5 | 0.25 | 0.42 | - |
囊翠碱甲 Delbruine | C25H39NO7 | 0.23 | 0.25 | - |
异脱氢对叶百部碱 Isodidehydrotuberostemonine | C22H29NO4 | 0.18 | - | - |
麻黄新碱C Ephedradine C | C30H40N4O5 | 0.11 | 0.12 | - |
木兰花碱(木兰碱) Magnoflorine | C20H23NO4 | 0.11 | 0.14 | 0.35 |
山梗菜醇碱 2,2°-(1-methyl-2,6-piperidinediyl) diacetophenon | C22H29NO2 | - | 0.16 | - |
次乌头碱 Hypaconitine | C33H45NO10 | - | 0.12 | - |
囊距翠雀灵 Delbruline | C26H41NO7 | - | - | 1.80 |
对叶百部烯酮 Tuberostemoenone | C22H29NO5 | - | - | 1.60 |
平贝碱甲 Cevane-3,6,14,16,20-pentol, (3β,5α,6α,16β)- | C27H45NO5 | - | - | 1.59 |
蝙蝠葛任碱 Menisperine | C21H25NO4 | - | - | 0.90 |
帽柱木酸 Mitraphyllic acid | C20H22N2O4 | - | - | 0.58 |
麦角新碱 Ergonovine | C31H39N5O5 | - | - | 0.43 |
1-甲基-2-[(4Z,7Z)-4,7-十三烷二烯基]-4(1H)喹诺酮1-methyl-2- [(4Z,7Z)-4,7-tridecadienyl]-4(1H) quinolone | C23H31NO | - | - | 0.38 |
番木鳖次碱 Vomicine | C22H24N2O4 | - | - | 0.31 |
对叶百部酮 Tuberostemonone | C22H31NO6 | - | - | 0.29 |
总占比 Total proportion (%) | 88.24 | 90.04 | 82.00 |
Table 4 The top 20 alkaloids with the highest relative contents and its percentage of the total relative content of alkaloids (%) in the pollen of basal, middle and distal flowers of the raceme of Aconitum piepunense
生物碱类 Alkaloids | 化学式 Chemical formula | 基部花 Basal flower (%) | 中部花 Middle flower (%) | 顶部花 Distal flower (%) |
---|---|---|---|---|
卡米车灵(多根乌头碱) Carmichaeline | C22H35NO4 | 51.77 | 59.10 | 40.59 |
塔拉萨敏 Talatisamine | C24H39NO5 | 14.50 | 13.74 | 12.67 |
去氢胡椒杀虫胺 Dehydropepper insecticide | C22H31NO3 | 5.58 | 6.45 | 3.38 |
N-氧-对叶百部碱 N-oxy-tuberostemonine | C22H33NO5 | 3.95 | - | 9.39 |
荜茇壬二烯哌啶 Pipernonaline | C21H27NO3 | 2.30 | 2.11 | 1.88 |
Zanthosimuline | C20H23NO2 | 1.53 | 1.44 | 1.28 |
Acsonine | C31H41NO8 | 1.51 | 0.63 | - |
半边莲碱(山梗菜碱) Lobeline | C22H27NO2 | 1.39 | 1.35 | 0.60 |
裸翠雀亭 Denudatine | C22H33NO2 | 1.13 | 0.76 | 2.01 |
高乌宁碱 Lappaconine | C23H37NO6 | 0.93 | 0.59 | 0.76 |
平贝碱丙 Pingbeimine C | C27H43NO6 | 0.90 | 1.17 | 1.22 |
苦木碱A 1-(ethoxycarbonyl)-β-carboline | C28H24N4O2 | 0.74 | 0.47 | - |
大叶桉亭 Robustine | C12H9NO3 | 0.48 | 0.48 | - |
1-甲酯基-β-咔啉 1-carbomethoxy-β-carboline | C13H10N2O2 | 0.35 | 0.24 | - |
几内亚胡椒碱 (2E,4E,12E)-13-(benzo[d][1,3]dioxol-5-yl)-N- isobutyltrideca-2,4,12-trienamide | C24H33NO3 | 0.29 | 0.31 | - |
麦角辛 Ergosine | C30H37N5O5 | 0.25 | 0.42 | - |
囊翠碱甲 Delbruine | C25H39NO7 | 0.23 | 0.25 | - |
异脱氢对叶百部碱 Isodidehydrotuberostemonine | C22H29NO4 | 0.18 | - | - |
麻黄新碱C Ephedradine C | C30H40N4O5 | 0.11 | 0.12 | - |
木兰花碱(木兰碱) Magnoflorine | C20H23NO4 | 0.11 | 0.14 | 0.35 |
山梗菜醇碱 2,2°-(1-methyl-2,6-piperidinediyl) diacetophenon | C22H29NO2 | - | 0.16 | - |
次乌头碱 Hypaconitine | C33H45NO10 | - | 0.12 | - |
囊距翠雀灵 Delbruline | C26H41NO7 | - | - | 1.80 |
对叶百部烯酮 Tuberostemoenone | C22H29NO5 | - | - | 1.60 |
平贝碱甲 Cevane-3,6,14,16,20-pentol, (3β,5α,6α,16β)- | C27H45NO5 | - | - | 1.59 |
蝙蝠葛任碱 Menisperine | C21H25NO4 | - | - | 0.90 |
帽柱木酸 Mitraphyllic acid | C20H22N2O4 | - | - | 0.58 |
麦角新碱 Ergonovine | C31H39N5O5 | - | - | 0.43 |
1-甲基-2-[(4Z,7Z)-4,7-十三烷二烯基]-4(1H)喹诺酮1-methyl-2- [(4Z,7Z)-4,7-tridecadienyl]-4(1H) quinolone | C23H31NO | - | - | 0.38 |
番木鳖次碱 Vomicine | C22H24N2O4 | - | - | 0.31 |
对叶百部酮 Tuberostemonone | C22H31NO6 | - | - | 0.29 |
总占比 Total proportion (%) | 88.24 | 90.04 | 82.00 |
[1] |
Adler LS (2000) The ecological significance of toxic nectar. Oikos, 91, 409-420.
DOI URL |
[2] |
Adler LS, Irwin RE (2012) Nectar alkaloids decrease pollination and female reproduction in a native plant. Oecologia, 168, 1033-1041.
DOI PMID |
[3] |
Arnold SEJ, Idrovo MEP, Arias LJL, Belmain SR, Stevenson PC (2014) Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness. Journal of Chemical Ecology, 40, 878-881.
DOI PMID |
[4] |
Ashman TL, Hitchens MS (2000) Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). American Journal of Botany, 87, 197-204.
PMID |
[5] |
Baker HG (1977) Non-sugar chemical constituents of nectar. Apidologie, 8, 349-356.
DOI URL |
[6] |
Barlow SE, Wright GA, Ma C, Barberis M, Farrell IW, Marr EC, Brankin A, Pavlik BM, Stevenson PC (2017) Distasteful nectar deters floral robbery. Current Biology, 27, 2552-2558.
DOI PMID |
[7] |
Brochu KK, van Dyke MT, Milano NJ, Petersen JD, McArt SH, Nault BA, Kessler A, Danforth BN (2020) Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Scientific Reports, 10, 3112-3112.
DOI PMID |
[8] |
Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Evolution, 49, 70-79.
DOI PMID |
[9] | Buchanan BB, Gruissem W, Jones RL (translated by Qu LJ, Gu HY, Bai SN, Zhao JD, Chen ZL (2003) Biochemistry & Molecular Biology of Plants, pp. 1026-1082. Science Press, Beijing. (in Chinese) |
[瞿礼嘉, 顾红雅, 白书农, 赵进东, 陈章良 译 (2003) 植物生物化学与分子生物学. 科学出版社, 北京.] | |
[10] |
Cane JH, Gardner DR, Weber M (2020) Neurotoxic alkaloid in pollen and nectar excludes generalist bees from foraging at death-camas, Toxicoscordion paniculatum (Melanthiaceae). Biological Journal of the Linnean Society, 131, 927-935.
DOI URL |
[11] |
Carlson JE, Harms KE (2006) The evolution of gender-biased nectar production in hermaphroditic plants. The Botanical Review, 72, 179-205.
DOI URL |
[12] |
Cook D, Manson JS, Gardner DR, Welch KD, Irwin RE (2013) Norditerpene alkaloid concentrations in tissues and floral rewards of larkspurs and impacts on pollinators. Biochemical Systematics and Ecology, 48, 123-131.
DOI URL |
[13] | De-Melo AAM, de Almeida-Muradian LB (2017) Chemical composition of bee pollen. In: Bee Products—Chemical and Biological Properties (ed. Alvarez-Suarez JM), pp. 221-259. Springer, Cham (Switzerland). |
[14] | Diggle PK (1995) Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology, Evolution, and Systematics, 26, 531-552. |
[15] |
Dübecke A, Beckh G, Lüllmann C (2011) Pyrrolizidine alkaloids in honey and bee pollen. Food Additives and Contaminants: Part A, 28, 348-358.
DOI URL |
[16] |
Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiology, 184, 39-52.
DOI PMID |
[17] |
Fisogni A, Cristofolini G, Rossi M, Galloni M (2011) Pollinator directionality as a response to nectar gradient: Promoting outcrossing while avoiding geitonogamy. Plant Biology, 13, 848-856.
DOI PMID |
[18] |
Flamini G, Cioni PL, Morelli I (2003) Use of solid-phase micro-extraction as a sampling technique in the determination of volatiles emitted by flowers, isolated flower parts and pollen. Journal of Chromatography A, 998, 229-233.
PMID |
[19] |
Ge XYM, Lu HS, Tian H, Wu Y, Zhang DY, Liao WJ (2022) Male-biased sex allocation in late-blooming flowers driven by resource limitation in the clonal perennial Aconitum kusnezoffii (Ranunculaceae). Journal of Systematics and Evolution, 60, 1393-1404.
DOI URL |
[20] |
Gosselin M, Michez D, Vanderplanck M, Roelants D, Glauser G, Rasmont P (2013) Does Aconitum septentrionale chemically protect floral rewards to the advantage of specialist bumblebees? Ecological Entomology, 38, 400-407.
DOI URL |
[21] |
Heiling JM, Cook D, Lee ST, Irwin RE (2019) Pollen and vegetative secondary chemistry of three pollen-rewarding lupines. American Journal of Botany, 106, 643-655.
DOI PMID |
[22] | Huang SQ, Tang LL, Yu Q, Guo YH (2004) Temporal floral sex allocation in protogynous Aquilegia yabeana contrasts with protandrous species: Support for the mating environment hypothesis. Evolution, 58, 1131-1134. |
[23] |
Jacquemart AL, Buyens C, Hérent MF, Quetin-Leclercq J, Lognay G, Hance T, Quinet M (2019) Male flowers of Aconitum compensate for toxic pollen with increased floral signals and rewards for pollinators. Scientific Reports, 9, 16498.
DOI PMID |
[24] |
Liu CQ, Huang SQ (2012) Does the relative importance of resource competition and architectural effect in floral variation vary with stages of floral ontogeny? Journal of Systematics and Evolution, 50, 119-124.
DOI URL |
[25] |
Mazer SJ, Dawson KA (2001) Size-dependent sex allocation within flowers of the annual herb Clarkia unguiculata (Onagraceae): Ontogenetic and among-plant variation. American Journal of Botany, 88, 819-831.
PMID |
[26] | Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. In: Nectar Chemistry (eds Nicolson SW, Thornburg RW), pp. 215-264. Springer, Dordrecht. |
[27] | Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Stevenson PC (2019) Chemistry of floral rewards: Intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecological Monographs, 89, e01335. |
[28] |
Pyke GH (1978) Optimal foraging: Movement patterns of bumblebees between inflorescences. Theoretical Population Biology, 13, 72-98.
PMID |
[29] |
Ritmejerytė E, Boughton BA, Bayly MJ, Miller RE (2020) Unique and highly specific cyanogenic glycoside localization in stigmatic cells and pollen in the genus Lomatia (Proteaceae). Annals of Botany, 126, 387-400.
DOI PMID |
[30] | Sharma A, Sharma S, Kumar A, Kumar V, Sharma AK (2022) Plant secondary metabolites:An introduction of their chemistry and biological significance with physicochemical aspect. In: Plant Secondary Metabolites (eds Sharma AK, Sharma A), pp. 1-45. Springer, Singapore. |
[31] |
Solomon BP (1985) Environmentally influenced changes in sex expression in an andromonoecious plant. Ecology, 66, 1321-1332.
DOI URL |
[32] |
Solomon BP (1988) Patterns of pre- and postfertilization resource allocation within an inflorescence: Evidence for interovary competition. American Journal of Botany, 75, 1074-1079.
DOI URL |
[33] |
Stevenson PC (2020) For antagonists and mutualists: The paradox of insect toxic secondary metabolites in nectar and pollen. Phytochemistry Reviews, 19, 603-614.
DOI |
[34] |
Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Functional Ecology, 31, 65-75.
DOI URL |
[35] |
Thorp RW (2000) The collection of pollen by bees. Plant Systematics and Evolution, 222, 211-223.
DOI URL |
[36] |
Wang H, Zhang ZQ, Zhang B, Wang LP, Guo W, Fang Y, Li QJ (2022) Architectural effects regulate resource allocation within the inflorescences with nonlinear blooming patterns. American Journal of Botany, 109, 1191-1202.
DOI PMID |
[37] |
Wang XY, Tang J, Wu T, Wu D, Huang SQ (2019) Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401-1406.
DOI URL |
[38] |
Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science, 339, 1202-1204.
DOI PMID |
[39] | Yan XF, Wang Y, Li YM (2007) Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 27, 2554-2562. (in Chinese with English abstract) |
[阎秀峰, 王洋, 李一蒙 (2007) 植物次生代谢及其与环境的关系. 生态学报, 27, 2554-2562.] | |
[40] |
Zangerl AR, Rutledge CE (1996) The probability of attack and patterns of constitutive and induced defense: A test of optimal defense theory. The American Naturalist, 147, 599-608.
DOI URL |
[41] |
Zhao ZG, Du GZ, Huang SQ (2010) The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant. BMC Plant Biology, 10, 91.
DOI |
[42] |
Zhao ZG, Lu NN, Conner JK (2016) Adaptive pattern of nectar volume within inflorescences: Bumblebee foraging behavior and pollinator-mediated natural selection. Scientific Reports, 6, 34499.
DOI PMID |
[1] | Suyan Ba, Chunyan Zhao, Yuan Liu, Qiang Fang. Constructing a pollination network by identifying pollen on insect bodies: Consistency between human recognition and an AI model [J]. Biodiv Sci, 2024, 32(6): 24088-. |
[2] | Shijia Wen, Minxue Deng, Ding Wu, Zhiyong Wang, Zongxin Ren. Comparative floral nectar attributes in four Swertia species (Gentianaceae) [J]. Biodiv Sci, 2024, 32(1): 23297-. |
[3] | Feifei Zhang, Tianfeng Yang, Lirong Chen, Dongmei Liu, Liuyuan Yang, Duyu Yang, Peng Ju, Lu Lu. Review of pollen color diversity in Angiosperms [J]. Biodiv Sci, 2024, 32(1): 23346-. |
[4] | Fuyan Chen, Chih-Chieh Yu, Qiuyue Zhang, Jian Huang, Yaowu Xing. The diversification history of Podophylloideae (Berberidaceae) and its underlying drivers [J]. Biodiv Sci, 2023, 31(7): 23100-. |
[5] | Fan Wu, Shenyun Liu, Huqiang Jiang, Qian Wang, Kaiwei Chen, Hongliang Li. Pollination difference between Apis cerana cerana and Apis mellifera ligustica during the late autumn and winter [J]. Biodiv Sci, 2023, 31(5): 22528-. |
[6] | Guoping Shen, Rui Han, Zengqiang Miao, Jiangwa Xing, Yongzhen Li, Rong Wang, Derui Zhu. Bacterial diversity differences and influence factors of four types of hydrochemical characteristic lakes in the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2022, 30(4): 21420-. |
[7] | Demei Hu, Renxiu Yao, Yan Chen, Xiansong You, Shunyu Wang, Xiaoxin Tang, Xiaoyue Wang. Tirpitzia sinensis improves pollination accuracy by promoting the compatible pollen growth [J]. Biodiv Sci, 2021, 29(7): 887-896. |
[8] | Yeqin Du, Di Zhang, Sai Wang, Lei Wang, Xingfu Yan, Zhanhui Tang. Sexual system characteristics of Lilium concolor var. megalanthum in peatland [J]. Biodiv Sci, 2021, 29(10): 1321-1335. |
[9] | Tang Min, Zou Yi, Su Qinzhi, Zhou Xin. A new perspective on landscape impact in bee populations: Considering the bee gut microbiome [J]. Biodiv Sci, 2019, 27(5): 516-525. |
[10] | Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen. Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators [J]. Biodiv Sci, 2019, 27(3): 306-313. |
[11] | Wang Xiaoyue,Zhu Xinxin,Yang Juan,Liu Yunjing,Tang Xiaoxin. Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume) [J]. Biodiv Sci, 2019, 27(2): 159-167. |
[12] | Jannathan Mamut, Xiaojun Cheng, Dunyan Tan. Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb [J]. Biodiv Sci, 2018, 26(5): 498-509. |
[13] | Dandan Lang,Min Tang,Xin Zhou. Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective [J]. Biodiv Sci, 2018, 26(5): 445-456. |
[14] | Yaru Zhu, Yanbing Gong. Methods of wind pollination [J]. Biodiv Sci, 2017, 25(8): 864-873. |
[15] | Xiaolong Zhang, Lihua Yang, Ming Kang. Post-pollination reproductive isolation of sympatric populations of Primulina eburnea and P. mabaensis (Gesneriaceae) [J]. Biodiv Sci, 2017, 25(6): 615-620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn