Biodiversity Science ›› 2014, Vol. 22 ›› Issue (5): 640-648.doi: 10.3724/SP.J.1003.2014.13240

Special Issue: Marine Biodiversity Special Feature

• Orginal Article • Previous Article     Next Article

Influence of coralline algae on biodiversity of macrobenthic community in intertidal zone of Nanji Islands

Yanbin Tang1, Yibo Liao1, Lu Shou1, Jiangning Zeng1, *(), Aigen Gao1, Quanzhen Chen1, Qinghai Sun2   

  1. 1 Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012
    2 Wenzhou Seatiger Seaweed Cultivation Co., Ltd., Wenzhou, Zhejiang 325401
  • Received:2013-11-12 Accepted:2014-07-15 Online:2014-10-09
  • Zeng Jiangning E-mail:jiangningz@126.com

With an aim of describing the influence of coralline algae on other macroalgae and benthic invertebrates in the intertidal zone of the Nanji Islands, an investigation of such organism assemblages was conducted in the Nanji Archipelago Marine Nature Reserve between May 2012 and February 2013. Shannon-Wiener index and Pielou's evenness indices were calculated for macroalgae (including coralline algae), non-Corallinaceae macroalgae (excluding coralline algae) and benthic invertebrates. In addition, the functional diversity of the benthic community was estimated using Rao's Q. Our results are as follows: (1) A total of 52 species of macroalgae belonging to 3 phyla, 3 classes, 16 orders, 21 families and 41 genera were found; 5 species among them belonged to coralline algae; (2) The dominance of coralline algae has reached a high level in the intertidal zone of the Nanji Islands except in the high tidal zone where relatively few macroalgae exist. The biomass of coralline alga accounted for 68.9% of the total algae biomass. Shannon-Wiener indices of macroalgae diversity varied from 1.638-4.044, and non-Corallinaceae macroalgae varied from 1.495- 3.809, while benthic invertebrates’ varied from 5.2890-6.917. Pielou’s evenness of macroalgae communities varied from 0.819-0.971, and non-Corallinaceae macroalgae varied from 0.930-0.973; benthic invertebrates ranged from 0.967 to 0.988; (3) Regression analyses between dominance of coralline algae and Shannon-Wiener and Pielou's evenness indices of macroalgae communities suggested that coralline algae may be reducing the species diversity of macroalgae. The result of correlation analysis between dominance of coralline algae and Shannon-Wiener index, Pielou's evenness of benthic invertebrates showed no significant correlation. (4) The dominance of coralline algae and Rao's Q of benthic invertebrates in low tidal zone were both higher than those in middle tidal zone, but the correlation analysis showed no significant correlation between them. Based on our results, we concluded that: well-adapted coralline algae species may have reduced the species diversity of other macroalgae in these systems via interspecific competition; meanwhile, the benthic invertebrates, perhaps because of their higher dispersal abilities and more diverse life histories relative to macroalgae, were not affected in terms of species or functional diversity by coralline algae.

Key words: macroalgae, benthic invertebrates, species diversity, functional diversity

Fig. 1

Study area and sampling transects of macrobenthos in intertidal zone of Nanji Islands"

Table 1

Functional traits of benthic invertebrates used in estimation of functional diversity"

功能特征
Functional trait
划分方式
Units
食性
Diet habit
肉食性、植食性、杂食性
Carnivorous, herbivory, omnivory
摄食方式
Feeding type
滤食、啮食、吞食
Filter feeder, grazer, swallow feeder
群居性
Gregariousness
以指数1-3分别代表独居、偶尔构成群体和总是构成群体
Indices from 1-3, representing singleton, paired to sometimes forming small schools, always schools, respectively
迁移能力
Migration capability
以指数1-3分别代表迁移能力的弱、中、强
Indices from 1-3, representing migration capability characterised by low, medium, high, respectively

Table 2

Dominance of coralline algae in intertidal zone of Nanji Islands"

季节
Season
潮区
Tidal zone
珊瑚藻类优势度
Dominance
春季
Spring
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.259
低潮区 Low tidal zone 0.346
夏季
Summer
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.585
低潮区 Low tidal zone 0.644
秋季
Autumn
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.597
低潮区 Low tidal zone 0.588
冬季
Winter
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.364
低潮区 Low tidal zone 0.975

Table 3

Shannon-Wiener and Pielou's index of macroalgae in intertidal zone of the Nanji Islands"

季节
Season
潮区
Tidal zone
物种多样性指数 Shannon-Wiener index 物种均匀度指数 Pielou’s evenness index
所有大型藻类
All macroalgae
非珊瑚藻大型藻类
Non-Corallinaceae macroalgae
所有大型藻类
All macroalgae
非珊瑚藻大型藻类
Non-Corallinaceae macroalgae
春季
Spring
中潮区 Middle tidal zone 3.793 3.601 0.971 0.973
低潮区 Low tidal zone 4.044 3.809 0.952 0.952
夏季
Summer
中潮区 Middle tidal zone 3.147 2.422 0.910 0.863
低潮区 Low tidal zone 2.987 2.489 0.942 0.963
秋季
Autumn
中潮区 Middle tidal zone 3.251 3.151 0.879 0.949
低潮区 Low tidal zone 2.590 1.925 0.863 0.830
冬季
Winter
中潮区 Middle tidal zone 3.335 3.216 0.930 0.930
低潮区 Low tidal zone 1.638 1.495 0.819 0.944

Table 4

Shannon-Wiener and Pielou's index of benthic invertebrates in intertidal zone of Nanji Islands"

季节 Season 潮区 Tidal zone 物种多样性指数
Shannon-Wiener index
物种均匀度指数
Pielou’s evenness index
春季 Spring 中潮区 Middle tidal zone 5.931 0.978
低潮区 Low tidal zone 6.917 0.988
夏季 Summer 中潮区 Middle tidal zone 6.212 0.967
低潮区 Low tidal zone 6.738 0.988
秋季 Autumn 中潮区 Middle tidal zone 6.336 0.981
低潮区 Low tidal zone 6.050 0.977
冬季 Winter 中潮区 Middle tidal zone 5.882 0.973
低潮区 Low tidal zone 5.289 0.987

Fig. 2

Correlation analysis between dominance of coralline algae and Shannon-Wiener index of macroalgae. (A) Including Corallinaceae; (B) Excluding Corallinaceae."

Fig. 3

Correlation analysis between dominance of coralline algae and Pielou's evenness of other macroalgae"

Table 5

Value of functional traits of benthic invertebrates in intertidal zone of Nanji Islands"

编号
No.

Species
食性
Diet habit
摄食方式
Feeding type
群居性
Gregariousness
迁移能力
Migration capability
1 异须沙蚕 Nereis heterocirrata 杂食性 Omnivory 吞食 Swallow feeder 1 3
2 马旋鳃虫 Spirobranchus maldivensis 杂食性 Omnivory 滤食 Filter feeder 3 3
3 红条毛肤石鳖 Acanthochiton rubrolineatus 植食性 Herbivory 啮食 Grazer 2 2
4 嫁虫戚 Cellana toreuma 植食性 Herbivory 啮食 Grazer 2 2
5 肋虫昌螺 Umbonium costatum 植食性 Herbivory 啮食 Grazer 3 2
6 短滨螺 Littorina balteata 植食性 Herbivory 啮食 Grazer 2 2
7 小结节滨螺 Nodilittorina exigua 植食性 Herbivory 啮食 Grazer 2 2
8 疣荔枝螺 Thais clavigera 肉食性 Carnivorous 啮食 Grazer 2 3
9 覆瓦小蛇螺 Serpulorbis imbricata 杂食性 Omnivory 滤食 Filter feeder 1 1
10 栗色拉沙蛤 Lasaea nipponica 杂食性 Omnivory 滤食 Filter feeder 3 1
11 短石蛏 Lithophaga curta 杂食性 Omnivory 滤食 Filter feeder 2 1
12 带偏顶蛤 Modiolus comptus 杂食性 Omnivory 滤食 Filter feeder 3 1
13 条纹隔贻贝 Septifer virgatus 杂食性 Omnivory 滤食 Filter feeder 3 1
14 中华小藤壶 Chthamalus sinensis 杂食性 Omnivory 滤食 Filter feeder 3 1
15 白条地藤壶 Euraphia withersi 杂食性 Omnivory 滤食 Filter feeder 3 1
16 鳞笠藤壶 Tetraclita squamosa squamosa 杂食性 Omnivory 滤食 Filter feeder 3 1
17 日本笠藤壶 Tetraclita japonica 杂食性 Omnivory 滤食 Filter feeder 3 1
18 纹藤壶 Amphibalanus amphitrite 杂食性 Omnivory 滤食 Filter feeder 3 1
19 白脊藤壶 Fistulobalanus albicostatus 杂食性 Omnivory 滤食 Filter feeder 3 1
20 钩虾亚目未定种 Gammaridea 杂食性 Omnivory 啮食 Grazer 3 3
21 藻钩虾属未定种 Amphithoe sp. 植食性 Herbivory 啮食 Grazer 3 3
22 腔齿海底水虱 Dynoides dentisinus 植食性 Herbivory 啮食 Grazer 2 3
23 光辉圆扇蟹 Sphaerozius nitidus 肉食性 Carnivorous 啮食 Grazer 1 3

Table 6

Rao's Q of benthic invertebrates in intertidal zone of Nanji Islands"

季节
Season
潮区
Tidal zone
功能多样性指数
Rao's Q
春季
Spring
中潮区 Middle tidal zone 0.139
低潮区 Low tidal zone 0.345
夏季
Summer
中潮区 Middle tidal zone 0.059
低潮区 Low tidal zone 0.135
秋季
Autumn
中潮区 Middle tidal zone 0.175
低潮区 Low tidal zone 0.239
冬季
Winter
中潮区 Middle tidal zone 0.176
低潮区 Low tidal zone 0.313

Table S1

Checklist and dominance of macroalgae in intertidal zone of Nanji Islands http://www.biodiversity-science.net/fileup/PDF/w2013-240-1.pdf"

编号
No.
物种
Species
优势度 Dominance
高潮带 High tidal zone 中潮带 Middle tidal zone 低潮带 Low tidal zone
春季
Spring
夏季
Summer
秋季
Autumn
冬季
Winter
春季
Spring
夏季
Summer
秋季
Autumn
冬季
Winter
春季
Spring
夏季
Summer
秋季
Autumn
冬季
Winter
红藻门 Rhodophyta
1 坛紫菜
Porphyra haitanensis
0.500 0.464 0.001 0.010
2 小石花菜
Gelidium divaricatum
0.266 0.249 0.029 0.004 0.062
3 匍匐石花菜
Gelidium pusillum
0.005
4 密集石花菜
Gelidium yamadae
5 海萝
Gloiopeltis furcata
6 蜈蚣藻
Grateloupia filicina
0.004
7 舌状蜈蚣藻
Grateloupia livida
0.001
8 长枝蜈蚣藻
Grateloupia prolongata
9 贴生美叶藻
Callophyllis adnata
0.001
10 珊瑚藻
Corallina officinalis
0.083 0.502 0.424 0.188 0.239 0.578 0.026 0.633
11 小珊瑚藻
Corallina pilulifera
0.010
12 叉节藻
Amphiroa ephedraea
13 宽角叉珊藻
Jania adhaerens
0.019 0.001 0.011 0.090
14 粗珊藻
Calliarthron yessoense
0.176 0.054 0.173 0.176 0.106 0.055 0.472 0.342
15 中间软刺藻
Chondracanthus intermedius
0.012 0.039 0.002 0.004
16 角叉菜
Chondrus ocellatus
17 裸干沙菜
Hypnea chordacea
18 密毛沙菜
Hypnea boergesenii
19 环节藻
Champia parvula
0.001
20 节荚藻
Lomentaria hakodatensis
21 凝菜
Campylaephora crassa
22 日本仙菜
Ceramium japonicum
23 波登仙菜
Ceramium boydenii
24 顶群藻
Acrosorium yendoi
25 橡叶藻
Phycodrys radicosa
26 粗枝软骨藻
Chondria crassicaulis
27 细枝软骨藻
Chondria tenuissima
28 羽枝凹顶藻
Laurencia pinnata
0.031 0.013
29 多管藻
Polysiphonia senticulosa
30 小鸭毛藻
Symphyocladia pumila
褐藻门 Phaeophyta
31 水云
Ectocarpus arctus
0.015
32 印度褐茸藻
Hincksia indica
0.004
33 宽叶网翼藻
Dictyopteris latiuscula
0.037 0.001
34 网地藻
Dictyota dichotoma
0.012
35 厚缘藻
Dilophus okamurae
0.002 0.006
36 厚网藻
Pachydictyon coriaceum
37 铁钉菜
Ishige okamurae
0.001 0.041 0.025
38 囊藻
Colpomenia sinuosa
0.001
39 鹅肠菜
Petalonia binghamiae
0.021 0.002
40 萱藻
Scytosiphon lomentaria
41 无节萱藻
Scytosiphon dotyi
0.005 0.009
42 昆布
Ecklonia kurome
0.001
43 羊栖菜
Hizikia fusiforme
0.003 0.083
44 瓦氏马尾藻
Sargassum vachellianum
0.001
45 鼠尾藻
Sargassum thunbergii
0.272 0.137 0.060 0.247 0.152 0.113 0.042 0.007
绿藻门 Chlorophyta
46 盘苔
Blidingia minima
47 浒苔
Enteromorpha prolifera
0.001
48 石莼
Ulva lactuca
0.002 0.004
49 蛎菜
Ulva conglobata
0.006 0.010 0.004
50 硬毛藻
Chaetomorpha antennina
51 细丝刚毛藻
Cladophora sericea
0.006
52 羽状羽藻
Bryopsis pennata
[1] .Branch GM, Branch ML (1981) Experimental analysis of intraspecific competition in an intertidal gastropod, Littorina unifasciata. Australian Journal of Marine and Freshwater Research, 32, 573-589.
[2] .Cai RX (蔡如星) (1995) Biology of Cirripedia. Bulletin of Biology(生物学通报), 30, 24-25. (in Chinese)
[3] .Chen GT (陈国通), Yang XL (杨晓兰), Yang JY (杨俊毅), Gao AG (高爱根) (1994) Ecological and environment qualitative study in the intertidal zone and land area of Nanji Archipelago. Donghai Marine Science(东海海洋), 12, 1-15. (in Chinese with English abstract)
[4] .Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143.
[5] .Eleftheriou A, McIntyre A (2005) Methods for the Study of Marine Benthos, 3rd edn. Blackwell Publishing, Oxford.
[6] .Gao AG (高爱根), Chen GT (陈国通), Yang JY (杨俊毅), You ZJ (尤仲杰) (1994) Ecological study on mollusca of the intertidal zone in Nanji Marine Nature Reserve. Donghai Marine Science(东海海洋), 12, 44-61. (in Chinese with English abstract)
[7] .Gao AG (高爱根), Zeng JN (曾江宁), Chen QZ (陈全震), Hu XG (胡锡钢), Yang JY (杨俊毅), Liao YB (廖一波), Shou L (寿鹿), Xu XQ (徐晓群), Liu JJ (刘晶晶), Jiang ZB (江志兵), Dong YT (董永庭), Hu YM (胡月妹) (2007) Time and space distribution of molluscas of intertidal zone in Nanji Archipelago Marine Nature Reserve. Acta Oceanologica Sinica(海洋学报), 29, 105-111. (in Chinese with English abstract)
[8] .Gao KS (高坤山) (1999) On the calcification of coralline algae. Oceanologia et Limnologia Sinica(海洋与湖沼), 30, 290-294. (in Chinese with English abstract)
[9] .Hans J, Jöst C, Zauke GP (2011) Significance and interspecific variability of accumulated trace metal concentrations in Antarctic benthic polychaetes. Science of the Total Environment, 409, 2845-2851.
[10] .Hayakawa J, Kawamura T, Ohashi S, Horii T, Watanabe Y (2008) Habitat selection of Japanese top shell (Turbo cornutus) on articulated coralline algae combination of preferences in settlement and post-settlement stage. Journal of Experimental Marine Biology and Ecology, 363, 118-123.
[11] .Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to gazing. Journal of Experimental Marine Biology and Ecology, 434/435, 94-101.
[12] .Kelaher BP, Underwood AJ, Chapman MG (2003) Experimental transplantations of coralline algal turf to demonstrate causes of differences in macrofauna at different tidal heights. Journal of Experimental Marine Biology and Ecology, 282, 23-41.
[13] .Kelaher BP, Castilla JC (2005) Habitat characteristics influence macrofaunal communities in coralline turf more than mesoscale coastal upwelling on the coast of northern Chile. Estuarine, Coastal and Shelf Science, 63, 155-165.
[14] .Lei XM (雷新明), Huang H (黄晖), Huang LM (黄良民) (2012) Current state of ecological functions of coralline algae in coral reef ecosystem. Ecological Science(生态科学), 31, 585-590. (in Chinese with English abstract)
[15] .Levins R (1968) Evolution in Changing Environments. Princeton University Press, Princeton.
[16] .Liu RY (刘瑞玉) (2008) Checklist of Marine Biota of China Seas (中国海洋生物名录). Science Press, Beijing. (in Chinese)
[17] .Liu RY (刘瑞玉), Ren XQ (任先秋) (2007) Fauna Sinica, Invertebrata, Vol. 42, Crustacea, Cirripedia, Thoracica (中国动物志无脊椎动物第四十二卷: 甲壳动物亚门蔓足下纲围胸总目). Science Press, Beijing. (in Chinese)
[18] .Ma KP (马克平), Liu YM (刘玉明) (1994) Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity(生物多样性), 2, 231-239. (in Chinese)
[19] .Olsgard F, Somerfield PJ, Carr MR (1997) Relationship between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient. Marine Ecology Progress Series, 149, 173-181.
[20] .Peng X (彭欣), Xie QL (谢起浪), Chen SB (陈少波), Huang XL (黄晓林), Qiu JB (仇建标), Zhong W (仲伟), Chen WD (陈万东) (2009) Distribution of intertidal benthos and the human impact in Nanji Islands, China. Oceanologia et Limnologia Sinica(海洋与湖沼), 40, 584-589. (in Chinese with English abstract)
[21] .Pielou EC (translated by Lu ZY (卢泽愚)) (1969) Introduction to Mathematical Ecology (数学生态学引论). Science Press, Beijing. (in Chinese)
[22] .Raffaelli D (1979) The grazer-algae interaction in the intertidal zone on New Zealand rocky shores. Journal of Experimental Marine Biology and Ecology, 38, 81-100.
[23] .Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24-43.
[24] .Ren XQ (任先秋) (2006) Fauna Sinica, Invertebrata, Vol. 41, Crustacea, Amphipoda, Gammaridea (I) (中国动物志无脊椎动物第四十一卷: 甲壳动物亚门端足目钩虾亚目(一)). Science Press, Beijing. (in Chinese)
[25] .Shen GY (沈国英), Shi BZ (施并章) (2002) Marine Ecology (海洋生态学). Science Press, Beijing. (in Chinese)
[26] .Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annual Review of Ecology, Evolution and Systematics, 17, 273-303.
[27] .Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy E, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininomonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501, 539-542.
[28] .Sun JZ, Ning XR, Le FF, Chen WD, Zhuang DG (2010) Long term changes of biodiversity of benthic macroalgae in the intertidal zone of the Nanji Islands. Acta Ecologica Sinica, 30, 106-112.
[29] .Wang ZR (王祯瑞) (1997) Fauna Sinica, Phylum Mollusca, Order Mytiloida (中国动物志: 软体动物门双壳纲贻贝目). Science Press, Beijing. (in Chinese)
[30] .Whittington-Jones KJ (1997) Ecological Interactions on A Rocky Shore: The Control of Macroalgal Distribution by Intertidal Grazers. Masters thesis. Science of Rhodes University, South Africa.
[31] .Xia BM (夏邦美), Wang YQ (王永强), Zhou JH (周锦华), Zhang DR (张德瑞) (2013) Flora Algarum Marinarum Sinicarum, Tomus, II, Rhodophyta, No. IV, Corallineales (中国海藻志第二卷: 红藻门, 第四册珊瑚藻目). Science Press, Beijing. (in Chinese)
[32] .Xu ZG (徐智广), Li MZ (李美真), Huo CL (霍传林), Yu DD (于道德), Zhang ZD (张振东), Shao YQ (邵雁群) (2012) Effects of CO2-induced seawater acidification on photosynthesis and calcification in the coralline alga Corallina pilulifera. Acta Ecologica Sinica(生态学报), 32, 699-705. (in Chinese with English abstract)
[33] .Xu ZM (徐芝敏), Jiang JL (蒋加伦), Sun JZ (孙建璋) (1994) Study on ecology and resources of marine algae in the intertidal zone, Nanji Archipelago. Donghai Marine Science(东海海洋), 12, 29-43. (in Chinese with English abstract)
[34] .You ZJ (尤仲杰), Chen ZY (陈志云) (2010) Systematic taxonomy of Thais (Gastropoda: Muricidae) along Zhejiang Coast. Journal of Zhejiang Ocean University (Natural Science) (浙江海洋学院学报(自然科学版)), 29, 306-317. (in Chinese with English abstract)
[35] .Zheng XQ (郑新庆), Huang LF (黄凌风), Li YC (李元超), Lin RC (林荣澄) (2013) The feeding selectivity of an herbivorous amphipod Ampithoe valida on three dominant macroalgal species of Yundang Lagoon. Acta Ecologica Sinica(生态学报), 33, 7166-7172. (in Chinese with English abstract)
[36] .Zoltán BD (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533-540.
[1] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[2] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[3] WEN Chun,JIN Guang-Ze. Effects of functional diversity on productivity in a typical mixed broadleaved-Korean pine forest [J]. Chin J Plant Ecol, 2019, 43(2): 94-106.
[4] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains [J]. Biodiv Sci, 2019, 27(2): 177-185.
[5] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[6] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. Amphibian species richness patterns in karst regions in Southwest China and its environmental associations [J]. Biodiv Sci, 2018, 26(9): 941-950.
[7] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[8] Xiaorong Huang. Relationship between plant functional diversity and productivity of Pinus massoniana plantations in Guangxi [J]. Biodiv Sci, 2018, 26(7): 690-700.
[9] Yu Zhang, Gang Feng. Distribution pattern and mechanism of insect species diversity in Inner Mongolia [J]. Biodiv Sci, 2018, 26(7): 701-706.
[10] Xiaqiu Tao,Shaopeng Cui,Zhigang Jiang,Hongjun Chu,Na Li,Daode Yang,Chunwang Li. Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China [J]. Biodiv Sci, 2018, 26(6): 578-589.
[11] Cheng Tian,Junqing Li,Xuyu Yang,Lin Yu,Dan Yuan,Yunxi Li. Preliminary surveys of wild animals using infrared camera in Wanglang National Nature Reserve, Sichuan Province [J]. Biodiv Sci, 2018, 26(6): 620-626.
[12] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[13] Han-Dong WEN, Lu-Xiang LIN, Jie YANG, Yue-Hua HU, Min CAO, Yu-Hong LIU, Zhi-Yun LU, You-Neng XIE. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China [J]. Chin J Plan Ecolo, 2018, 42(4): 419-429.
[14] Tianqi Shang, Nuonan Ye, Haiqing Gao, Hongdi Gao, Lita Yi. Community Structure Analysis of a Public Welfare Forest Based on Multivariate Regression Trees [J]. Chin Bull Bot, 2018, 53(2): 238-249.
[15] LIU Hai-Yue, LI Xin-Mei, ZHANG Lin-Lin, WANG Jiao-Jiao, HE Xue-Li. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China [J]. Chin J Plan Ecolo, 2018, 42(2): 252-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] David M. Spooner. Species delimitations in plants: lessons learned from potato taxonomy by a practicing taxonomist[J]. J Syst Evol, 2016, 54(3): 191 -203 .
[2] CHEN Jin, LI Yang, HUANG Jian-Hui. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe[J]. Chin J Plan Ecolo, 2011, 35(1): 9 -16 .
[3] Pengtao Wang, Jing Zhao, Huanhuan Yu. Reactive Oxygen Species Signaling in Stomata[J]. Chin Bull Bot, 2014, 49(4): 490 -503 .
[4] ZHAN Zha_Jun, SUN Han_Dong, WU Hou_Ming and YUE Jian_Min. Chemical Components from the Fungus Englero myces goetzei[J]. J Integr Plant Biol, 2003, 45(2): 248 -252 .
[5] Fu-Min Wang, Jing-Feng Huang and Xiu-Zhen Wang. Identification of Optimal Hyperspectral Bands for Estimation of Rice Biophysical Parameters[J]. J Integr Plant Biol, 2008, 50(3): 291 -299 .
[6] WU Fu-Zhong, YANG Wan-Qin, ZHANG Jian, ZHOU Li-Qiang. Effects of cadmium stress on growth and nutrient accumulation, distribution and utilization in Osmanthus fragrans var. thunbergii[J]. Chin J Plan Ecolo, 2010, 34(10): 1220 -1226 .
[7] Taylor E. Shaw. Species diversity in restoration plantings: Important factors for increasing the diversity of threatened tree species in the restoration of the Araucaria forest ecosystem[J]. Plant Diversity, 2019, 41(02): 84 -93 .
[8] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[9] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .
[10] Li Linghao. Effects of Land-use Change on Soil Carbon Storage in Grassland Ecosystems[J]. Chin J Plan Ecolo, 1998, 22(4): 300 -302 .