Biodiversity Science ›› 2013, Vol. 21 ›› Issue (4): 468-480.doi: 10.3724/SP.J.1003.2013.13040

Special Issue: Microbes Diversity

• Orginal Article • Previous Article     Next Article

Biodiversity and cold adaptive mechanisms of psychrophiles

Yuhua Xin, Yuguang Zhou, Xiuzhu Dong*()   

  1. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101
  • Received:2013-02-05 Accepted:2013-07-01 Online:2013-07-29
  • Dong Xiuzhu

Cold-adapted bacteria and archaea are widely distributed in cold environments on Earth, such as permafrost, cold soils and deserts, glaciers, lakes, sea ice in the Arctic, Antarctic and high mountains, as well as the deep sea, ice caves and the atmospheric stratosphere etc. Cold-adapted organisms inhabiting these environments exhibit rich diversity. Studies on the biogeography of psychrophiles will enable us to understand their biodiversity, distribution and origins. Due to long-term living in cold regions, cold-adapted bacteria and archeae have developed specific physiological mechanisms of adaptation to cold environments. These mechanisms include: regulating the fluidity of the cytoplasmic membrane through adjusting the composition of membrane lipids; achieving low-temperature protection through compatibility solute, antifreeze proteins, ice-binding proteins, ice-nucleation proteins and anti-nucleating proteins; production of heat-shock and cold- shock proteins, cold acclimation protein and DEAD-box RNA helicase at low temperatures; production of cold-active enzymes; increasing energy generation and conservation. With the rapid development of sequencing technology, various omics-based approaches have been used to reveal cold-adaptive mechanisms of psychrophiles at the genomic level.

Key words: psychrophiles, biodiversity, biogeography, cold-adaptive mechanisms

Appendix I

Main phyla of the psychrophiles in cold environments"

Site and sample
类群 Group 参考文献
科以上类群 Group above family 属及种 Genus and species
Vostok湖5G冰芯 α-Proteobacteria, Actinobacteria, Firmicutes D’Elia et al., 2008
Vostok湖3593米冰芯 α-和β-Proteobacteria, HGC, LGC及CFB类群 Brachybacteria, Methylobacterium, Paenibacillus, Sphingomonas Christner et al., 2001
Dronning Maud Land浅层冰芯 Methylobacterium, Brevundimonas, Paenibacillus, Bacillus, Micrococcus, Bacillus aryabhattai Antonya et al., 2012
Canada 冰川冰尘穴 Acidobacterium, Actinobacteria, Cyanobacteria, Cytophagales, Gemmimonas, Planctomycetes, Proteobacteria, Verrucomicrobia Christner et al., 2003a
Lower Wright冰川沉积物 Proteobacteria, Firmicutes, Acidobacteria, Cyanobacteria, Bacteroidetes, Planctomycetes, candidate division OP10 Stibal et al., 2012
Bratina岛冰川融水湖沉积物 α-, β-和γ-Proteobacteria, CFB类群, Spirochaetaceae, Actinobacteria, Crenarchaeota Sjöling & Cowan, 2003
GISP2冰芯 α-, β-和γ-Proteobacteria, HGC, LGC及CFB类群, Methylobacterium, Rhodococcus, Mycobacterium, Sphingomonas, Arthrobacter, Frigoribacterium, Thermus及厌氧的Bacteroides, Eubacterium, Clostridium Sheridan et al., 2003; Miteva et al., 2004; Tung et al., 2006
格陵兰岛Russell冰川 Proteobacteria Stibal et al., 2012
马兰冰川冰芯 α-, β-和γ-Proteobacteria, CFB类群, Acinetobacter, HGC, LGC和其他类群细菌 马晓军, 2004; 向述荣等, 2004; Zhang et al., 2001
慕士塔格冰川冰芯 α-和γ-Proteobacteria, CFB类群, HGC Acinetobacter, Cryobacterium, Flavobacterium Xiang et al., 2005
南极表层雪和常年积雪 Deinococcus-like Carpenter et al., 2000
珠穆朗玛峰地区果曲、东绒布、扎当和帕隆4号冰川 α-, β-和γ-Proteobacteria, Actinobacteria, Bacteroidetes Sphingomonas, Polaromonas, Acinetobacter, Hymenobacter, Acinetobacter, Enterobacter, Rhizobium, Actinobacteria中的11个属 Liu et al., 2009b
Yala冰川的表层雪 Cyanobacteria, α-Proteobacteria, Firmicutes, CFB类群 Liu et al., 2011
日本立山(Tateyama Mountain)五月雪坑 Cryobacterium psychrophilum, Variovorax paradoxus, Janthinobacterium lividum Segawa et al., 2005
珠穆朗玛峰地区东绒布冰川冰、雪 α-, β-和γ-Proteobacteria, Actinobacteria, Firmicutes, CFB类群, Cyanobacteria,门TM7 Acinetobacter, Leclercia 刘勇勤等, 2006
南极常年冻土 α-proteobacteria, HCG Fibrobacter, Acidobacterium, Arthrobacter, Nocardioides, Bacillus, Caulobacter, Comamonas, Flavobacterium, Pseudomonas, Sphingobacterium, 另外还存在Nitrospina、green non-sulfur bacteria及其近缘细菌, Fibrobacter, Acidobacterium和CFB类群的属 Gilichinsky et al., 2007
西伯利亚冻土和冰沼土、加拿大北极高纬度地带和南极Dry Valley岩石和土壤 Bacillusc, Mycobacteria, Micrococcus, Brevibacterium, Planococcus, Arthrobacter, Clavibacter, Friedmanniella Christner et al., 2000
喜马拉雅山Pindari冰川的3个土壤样品P1S、P4S和P8S Actinobacteria, Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes Shivaji et al., 2011
阿尔卑斯山冻土带早融雪位点(ESM)和晚融雪位点(LSM)土壤 ESM: Acidobacteria, Actinobacteria, α-proteobacteria
LSM: Acidobacteria
Zinger et al., 2009
珠穆朗玛峰两个冰碛湖和两个冰川融水湖 α-, β-和γ-Proteobacteria, CFB类群, Actinobacteria, Planctomycetes, Verrucomicrobia, Fibrobacteres, Eukaryoticchroloplast Liu et al., 2006
南极McMurdo Dry Valleys地区8-26539龄藻丛 Actinobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, Proteobacteria, Deinococcus-Thermus类群 Sporosarcina Antibus et al., 2012
青藏高原若尔盖湿地 Methanolobus psychrophilus R15 Zhang et al., 2008
南极海冰 α-和γ-Proteobacteria, CFB类群, 革兰氏阳性细菌, Chlamydiales和Verrucomicrobiales Colwellia, Shewanella, Marinobacter, Planococcus, Pseudoalteromonas, Psychrobacter, Halomonas, Pseudomonas, Hyphomonas, Sphingomonas, Arthrobacter, Halobacillus, ColwelliaAlteromonas近缘的新的系统发育类群及CFB类群中的一些属 Bowman et al., 1997; Brown & Bowman, 2001
北极Chukchi Sea浮冰 Proteobacteria, CFB类群 Alteromonas, Colwellia, Glaciecola, Octadecabacter, Pseudoaltermonas, Shewanella, Cytophaga, Flavobacterium, Gelidibacter, Polaribacter Junge et al., 2002
北极海冰的多年冰 α-和γ-proteobacteria, CFB类群 Bowman et al., 2012
不同地区深海海水 γ-Proteobacteria Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas DeLong et al., 1997
冲绳海槽南部的深海 Alcanivorax, Bacillus, Cobetia, Halomonas, Methylarcula, Micrococcus, Myroides, Paracoccus, Planococcus, Pseudomonas, Psychrobacter, Sporosarcina, Wangia Dang et al., 2009
1 Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Antarctic Microbiology (ed. Friedman EI), pp. 265-295. John Wiley & Sons, New York.
2 Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica.Microbiology, 67, 547-555.
3 Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, Francisci DD, Chong KWY, Pilak O, Chew HH, Maere MZD, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation.International Society for Microbial Ecology, 3, 1012-1035.
4 Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard.FEMS Microbiology Ecology, 59, 255-264.
5 Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis.Applied and Environmental Microbiology, 75, 711-718.
6 Antibus DE, Leff LG, Hall BL, Baeseman JL, Blackwood CB (2012) Cultivable bacteria from ancient algal mats from the McMurdo Dry Valleys, Antarctica.Extremophiles, 16, 105-114.
7 Antonya R, Krishnana KP, Laluraja CM, Thambana M, Dhakephalkarb PK, Engineerb AS, Shivaji S (2012) Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core.Microbiological Research, 167, 372-380.
8 Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures.Extremophiles, 11, 343-354.
9 Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean Archaeal assemblages and comparison with Antarctic assemblages.Applied and Enviromental Microbiology, 70, 781-789.
10 Bhatia M, Sharp M, Foght J (2006) Distinct bacterial communities exist beneath a high Arctic polythermal glacier.Applied and Environmental Microbiology, 72, 5838-5845.
11 Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiology Ecology, 35, 267-275.
12 Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice.Applied and Environmental Mirobiology, 63, 3068-3078.
13 Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene.International Society for Microbial Ecology, 6, 11-20.
14 Brown AD (1976) Microbial water stress.Bacteriological Reviews, 40, 803-846.
15 Carpenter EJ, Lin SJ, Capone DG (2000) Bacterial activity in South Pole snow. Applied and Environmental Microbiology, 66, 4514-4517.
16 Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies.Trends in Microbiology, 18, 374-381.
17 Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature.Journal of Bioscience and Bioengineering, 31, 157-165.
18 Chen ZJ, Yu HY, Li LY, Hu SN, Dong XZ (2012) The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics.Environmental Microbiology Reports, 4, 633-641.
19 Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V (2000) Recovery and identification of viable bacteria immured in glacial ice.Icarus, 144, 479-485.
20 Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice.Environmental Microbiology, 3, 570-577.
21 Christner BC, Kvitko BH II, Reeve JN (2003a) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole.Extremophiles, 7, 177-183.
22 Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003b) Bacterial recovery from ancient glacial ice.Environmental Microbiology, 5, 433-436.
23 Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica.Limnology and Oceanography, 51, 2485-2501.
24 Cipolla A, D’Amico S, Barumandzadeh R, Matagne A, Feller G (2011) Stepwise adaptations to low temperature as revealed by multiple mutants of psychrophilic α-amylase from antarctic bacterium.The Journal of Biological Chemistry, 286, 38348-38355.
25 Corsaro MM, Pieretti G, Lindner B, Lanzetta R, Parrilli E, Tutino ML, Parrilli M (2008) Highly phosphorylated core oligosaccaride structures from cold-adapted Psychromonas arctica.European Journal of Chemistry, 14, 9368-9376.
26 Crump BC, Adams HE, Hobbie JE, Kling GW (2007) Biogeography of bacterioplankton in lakes and streams of an Arctic tundra catchment.Ecology, 88, 1365-1378.
27 Dang HY, Zhu H, Wang J, Li TG (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough.World Journal of Microbiology and Biotechnology, 25, 71-79.
28 D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life.European Molecular Biology Organization Reports, 7, 385-389.
29 D’Elia T, Veerapaneni R, Roger SO (2008) Isolation of microbes from Lake Vostok Accretion Ice.Applied and Environmental Mirobiology, 74, 4962-4965.
30 DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria.Applied and Environmental Micobiology, 63, 2105-2108.
31 De Vendittisa E, Castellano I, Cotugno R, Ruocco MR, Raimo G, Masullo M (2008) Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.Journal of Theoretical Biology, 250, 156-171.
32 Dong XZ, Chen ZJ (2012) Psychrotolerant methanogenic archaea: diversity and cold adaptation mechanisms.Science China-Life Sciences, 55, 415-421.
33 Fan SG (樊绍刚), Zhang DQ (张党权), Deng SY (邓顺阳), Ming FH (明付焕) (2009) Mechanism of antifreeze protein and ice nucleoprotein on plant antifreeze activity.Nonwood Forest Research(经济林研究), 27, 125-130. (in Chinese with English abstract)
34 Feller G, Payan F, Theys F, Qian MX, Haser R, Gerday C (1994) Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23.European Journal of Biochemistry, 222, 441-447.
35 Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation.Nature Reviews Microbiology, 1, 200-208.
36 Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures.Journal of Physics: Condensed Matter, 22, 323101.
37 Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proceedings of the National Academy of Sciences, USA, 95, 11476-11481.
38 Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proceedings of the National Academy of Sciences, USA, 106, 22427-22432.
39 García-Descalzo L, Alcazar A, Baquero F, Cid C (2011) Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria.Cell Stress and Chaperones, 16, 203-218.
40 Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, Bertilso S, Kirchman DL, Lovejoy C, Yager PL, Murray AE (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proceedings of the National Academy of Sciences, USA, 109, 17633-17638.
41 Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive Ca2+-dependent antifreeze protein in an Antarctic bacterium.FEMS Microbiology Letters, 245, 67-72.
42 Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton P, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology.Astrobiology, 7, 275-311.
43 Graumann P, Wendrich TM, Weber MHW, Schröder K, Marahiel MA (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Molecular Microbiology, 25, 741-756.
44 He JZ (贺纪正), Ge Y (葛源) (2008) Recent advances in soil microbial biogeography.Acta Ecologica Sinica(生态学报), 28, 5571-5582. (in Chinese with English abstract)
45 Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. Journal of Bacteriology, 193, 1552-1562.
46 Junge K, Imhoff F, Staley T, Deming W (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature.Microbial Ecology, 43, 315-328.
47 Karl DM, Bird DF, Björkman K, Houlihan T, Shakelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science, 286, 2144-2147.
48 Kasana RC, Gulati A (2011) Cellulases from psychrophilic microorganisms: a review.Journal of Basic Microbiology, 51, 572-579.
49 Kawahara H, Koda N, Oshio M, Obata H (2000) A cold acclimation protein with refolding activity on frozen denatured enzymes.Bioscience, Biotechnology & Biochemistry, 64, 2668-2674.
50 Kawahara H (2002) The structures and functions of Ice Crystal-Controlling Proteins from Bacteria. Journal of Bioscience and Bioengineering, 94, 492-496.
51 Kuddus M, Ramteke PW (2012) Recent developments in production and biotechnological applications of cold-active microbial proteases.Critical Reviews in Microbiology, 38, 330-338.
52 Kuhn E (2012) Toward understanding life under subzero conditions: the significance of exploring psychrophilic ‘‘cold-shock’’ proteins.Astrobiology, 12, 1078-1086.
53 Lim J, Thomas T, Cavicchioli R (2000) Low temperature regulated DEADbox RNA helicase from the Antarctic archaeon, Methanococcoides burtonii.Journal of Molecular Biology, 297, 553-567.
54 Lin YM (林艳梅), Sheng JP (生吉萍), Shen L (申琳), Cheng FS (程凡升) (2010) Trends in cold-adapted and cellulose-degrading microorganisms.Biotechnology(生物技术), 20, 95-98. (in Chinese with English abstract)
55 Liu YQ, Yao TD, Jiao NZ, Kang SC, Zeng YH, Huang SJ (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest.FEMS Microbiology Letters, 265, 98-105.
56 Liu YQ (刘勇勤), Yao TD (姚檀栋), Kang SC (康世昌), Jiao NZ (焦念志), Zeng YH (曾永辉), Shi Y (史扬), Luo TW (骆庭伟), Jing ZF (井哲帆), Huang SJ (黄思军) (2006) Microbial community and its seasonal changes in ice and snow at the Everest East Rongbuk Glacier.Chinese Science Bulletin(科学通报), 51, 1287-1296. (in Chinese)
57 Liu YQ, Yao TD, Jiao NZ, Kang SC, Xu BQ, Zeng YH, Huang SJ, Liu XB (2009a) Bacterial diversity in the snow over Tibetan Plateau Glaciers.Extremophiles, 13, 411-423.
58 Liu YQ, Yao TD, Jiao NZ, Kang SC, Huang SJ, Li Q, Wang KJ, Liu XB (2009b) Culturable bacteria in glacial meltwater at 6350 m on the East Rongbuk Glacier, Mount Everest.Extremophiles, 13, 89-99.
59 Liu YQ, Yao TD, Jiao NZ, Tian LD, Hu AY, Yu WS, Li SH (2011) Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier.Extremophiles, 15, 411-421.
60 López-García P, Brochier C, Moreira D, Rodríguez-Valera F (2004) Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers.Environmental Microbiology, 6, 19-34.
61 Ma XJ (马晓军) (2004) Studies on Detection, Recovery, Isolation and Characterization of Bacteria in Low Temperature Extreme Environment (低温极端环境中细菌的恢复、鉴定、分离及其特征研究). PhD dissertation, Lanzhou University, Lanzhou. (in Chinese)
62 Margesin R, Feller G (2010) Biotechnological applications of psychrophiles.Environmental Technology, 31, 835-844.
63 Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms.Research in Microbiology, 162, 346-361.
64 Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map.Nature Reviews Microbiology, 4, 102-112.
65 Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core.Applied and Environmental Mirobiology, 70, 202-213.
66 Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, Heijne GV, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125.Genome Research, 15, 1325-1335.
67 Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proceedings of the National Academy of Sciences, USA, 102, 10913-10918.
68 Morrison BA, Shain DH (2008) An AMP nucleosidase gene knockout in Escherichia coli elevates intracellular ATP levels and increases cold tolerance.Biology Letters, 4, 53-56.
69 Napolitano MJ, Shain DH (2005) Distinctions in adenylate metabolism among organisms inhabiting temperature extremes.Extremophiles, 9, 93-98.
70 Parry BR, Shain DH (2011) Manipulations of AMP metabolic genes increase growth rate and cold tolerance in Escherichia coli: implications for Psychrophilic evolution.Molecular Biology and Evolution, 28, 2139-2145.
71 Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica.FEMS Microbiology Ecology, 69, 143-157.
72 Phadtare S (2004) Recent developments in bacterial cold-shock response.Current Issues in Molecular Biology, 6, 125-136.
73 Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glöckner F-O, Lupas AN, Amann R, Klenk HP (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environmental Microbiology, 6, 887-902.
74 Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium.FEMS Microbiology Ecology, 61, 214-221.
75 Raymond JA, Christner BC, Schuster SC (2008) A bacterial ice-binding protein from the Vostok ice core.Extremophiles, 12, 713-717.
76 Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology, 86, 1715-1722.
77 Rodrigues DF, Jesus EC, Ayala-del-RÍo HL, Pellizari VH, Gilichinsky D, Sepulveda-Torres L, Tiedje JM (2009) Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium.International Society for Microbial Ecology, 3, 658-665.
78 Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Research, 13, 1580-1588.
79 Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in Mountain Snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR.Applied and Environmental Microbiology, 71, 123-130.
80 Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core.Applied and Environmental Microbiology, 9, 2153-2160.
81 Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CBS, Datta GN, Manchanda RK, Rao UR, Bhargava PM, Narlikar JV (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere.International Journal of Systematic and Evolutionary Microbiology, 59, 2977-2986.
82 Shivaji S, Pratibha MS, Sailaja B, Kishore KH, Singh AK, Begum Z, Anarasi U, Prabagaran SR, Reddy GSN, Srinivas TNR (2011) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones.Extremophiles, 15, 1-22.
83 Sjöling S, Cowan DA (2003) High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica.Extremophiles, 7, 275-282.
84 Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic Glacier.Applied and Environmental Microbiology, 66, 3214-3220.
85 Sommaruga R, Casamayor EO (2009) Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes.Freshwater Biology, 54, 994-1005.
86 Stibal M, Hasan F, Wadham JL, Sharp MJ, Anesio AM (2012) Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates.Extremophiles, 16, 255-265.
87 Tang MA, Motoshima H, Watanabe K (2012) Fluorescence studies on the stability, flexibility and substrate-induced conformational changes of acetate kinases from psychrophilic and mesophilic bacteria.Protein Journal, 31, 337-344.
88 Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics.Environmental Microbiology, 12, 2658-2676.
89 Tung HC, Price PB, Bramall NE, Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice.Astrobiology, 6, 69-86.
90 Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate.FEMS Microbiology Reviews, 24, 263-290.
91 Williams TJ, Lauro FM, Ertan H, Burg DW, Poljak A, Raftery MJ, Cavicchioli R (2011) Defining the response of a microorganism to temperatures that span its complete growth temperature range (-2°C to 28°C) using multiplex quantitative proteomicsemi.Environmental Microbiology, 13, 2186-2203.
92 Wu Y (武岳), Ai GM (艾国民), Dong XZ (东秀珠) (2013) Compatible-solutes acted as the cryoprotectant for Methanolobus psychrophilus R15. Acta Microbiologica Sinica, in press (in Chinese with English abstract)
93 Xiang SR (向述荣), Yao TD (姚檀栋), An LZ (安黎哲), Li Z (李真), Wu GJ (邬光剑), Wang YQ (王有清), Xu BQ (徐伯青), Wang JX (汪君霞) (2004) The relationship of changes of bacterial flora structure to climate and environment in Malan ice core.Chinese Science Bulletin(科学通报), 49, 1762-1769. (in Chinese)
94 Xiang SR, Yao TD, An LZ, Wu GJ, Xu BQ, Ma XJ, Li Z, Wang JX, Yu WS (2005) Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core.Science in China Series D: Earth Science, 48, 1728-1739.
95 Xiang SR (向述荣), Yao TD (姚檀栋), Wu GJ (邬光剑), Chen Y (陈勇), Shang TC (尚天翠), Pu LL (蒲玲玲), An LZ (安黎哲) (2006a) Deposition properties of bacterial populations in the Muztagata ice core. Quaternary Sciences (第四纪研究), 26, 185-191. (in Chinese with English abstract)
96 Xiang SR (向述荣), Yao TD (姚檀栋), Chen Y (陈勇), Shang TC (尚天翠), Pu LL (蒲玲玲) (2006b) Progresses of community distribution of microorganisms in glacier.Acta Ecologica Sinica(生态学报), 26, 3098-3107. (in Chinese with English abstract)
97 Yamanaka K (1999) Cold shock response in Escherichia coli.Journal of Molecular Microbiology and Biotechnology, 1, 193-202.
98 Yang JY, Dang HY (2011) Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium.FEMS Microbiology Letters, 325, 71-76.
99 Yannarell AC, Triplett EW (2004) Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales.Applied and Environmental Microbiology, 70, 214-223.
100 Yao TD (姚檀栋), Xiang SR (向述荣), Zhang XJ (张晓君), Pu JC (蒲健辰) (2003) Microbiological characteristics recorded by Malan and Puruogangri ice cores.Quaternary Sciences(第四纪研究), 23, 193-199. (in Chinese with English abstract)
101 Zeng YX, Zheng TL, Yu Y, Chen B, He JF (2010) Relationships between Arctic and Antarctic Shewanella strains evaluated by a polyphasic taxonomic approach.Polar Biology, 33, 531-541.
102 Zhang GS, Jiang N, Liu XL, Dong XZ (2008) Methanogenesis from Methanol at low temperatures by a novel Psychrophilic Methanogen, “Methanolobus psychrophilus” sp. nov., Prevalent in Zoige Wetland of the Tibetan Plateau.Applied and Environmental Microbiology, 74, 6114-6120.
103 Zhang XJ, Yao TD, Ma XJ, Wang NL (2001) Analysis of the characteristics of microorganisms packed in the ice core of Malan Glacier, Tibet, China.Science in China Series D: Earth Sciences, 44, 369-374.
104 Zinger L, Shahnavaz B, Baptist F, Geremia RA, Choler P (2009) Microbial diversity in alpine tundra soils correlates with snow cover dynamics.International Society for Microbial Ecology, 3, 850-859.
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[8] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[9] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[10] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[11] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[12] Qian Haiyuan,Yu Jianping,Shen Xiaoli,Ding Ping,Li Sheng. Diversity and composition of birds in the Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 76-80.
[13] Dai Yunchuan,Xue Yadong,Zhang Yunyi,Li Diqiang. Summary comments on assessment methods of ecosystem integrity for national parks [J]. Biodiv Sci, 2019, 27(1): 104-113.
[14] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. Amphibian species richness patterns in karst regions in Southwest China and its environmental associations [J]. Biodiv Sci, 2018, 26(9): 941-950.
[15] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
Full text



[1] Xiaorong Huang. Relationship between plant functional diversity and productivity of Pinus massoniana plantations in Guangxi[J]. Biodiv Sci, 2018, 26(7): 690 -700 .
[2] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[3] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis[J]. Chin J Plan Ecolo, 2018, 42(5): 585 -594 .
[4] Guogang Zhang, Wei Liang, Guozhong Chu. Wintering behavior of black-faced spoonbill in Hainan Island[J]. Biodiv Sci, 2006, 14(4): 352 -358 .
[5] Hai-Lin Qin, An-Jun Deng, Guan-Hua Du, Peng Wang, Jin-Lan Zhang and Zhi-Hong Li. Fingerprinting Analysis of Rhizoma Chuanxiong of Commercial Types using 1H Nuclear Magnetic Resonance Spectroscopy and High Performance Liquid Chromatography Method[J]. J Integr Plant Biol, 2009, 51(6): 537 -544 .
[6] PANG XinAn, LIU-Xing, LIU Hong, WU Cui, WANG Jing-Yuan, YANG Shu-Xiang, WANG Qing-Feng. The geographic distribution and habitat of the Isoetes plants in China[J]. Biodiv Sci, 2003, 11(4): 288 -294 .
[7] Li-Na SHA, Xing FAN, Hai-Qin ZHANG, Hou-Yang KANG, Yi WANG, Xiao-Li WANG, Li ZHANG, Chun-Bang DING, Rui-Wu YANG, Yong-Hong ZHOU. Phylogenetic relationships in Leymus (Triticeae; Poaceae): Evidence from chloroplast trnH-psbA and mitochondrial coxII intron sequences[J]. J Syst Evol, 2014, 52(6): 722 -734 .
[8] SHEN Zhang-Jun,SUN Qing-Ye, and TIAN Sheng-Ni. Dynamics of nitrogen and phosphorus concentrations and nitrate reductase and acidic phosphatase activities in Imperata cylindrica on copper mine tailings[J]. Chin J Plan Ecolo, 2012, 36(2): 159 -168 .
[9] WEI Yuan, WANG Shi-Jie, LIU Xiu-Ming, and HUANG Tian-Zhi. Genetic diversity of arbuscular mycorrhizal fungi in karst microhabitats of Guizhou Province, China[J]. Chin J Plan Ecolo, 2011, 35(10): 1083 -1090 .
[10] Han Jian-guo, H. T. Clifford, Jia Shen-xiu, Wang Pei. A Cluster Analysis of Seedling Characters of the Gramineae[J]. J Syst Evol, 1993, 31(6): 517 -532 .