Biodiversity Science ›› 2008, Vol. 16 ›› Issue (5): 462-469.doi: 10.3724/SP.J.1003.2008.08108

• 论文 • Previous Article     Next Article

Variation and phenotypic plasticity in life history traits of Spartina al-terniflora along the east coast of China

Yimo Zhang1, Qing Wang2, Meng Lu1, Xin Jia1, Yupeng Geng1, Bo Li1*   

  1. 1 Ministry of Education Key Laboratory for Biodiversity Science & Ecological Engineering, Institute of Biodiversity Sci-ence, Fudan University, Shanghai 200433
    2 Shanghai Academy of Environmental Sciences, Shanghai 200233
  • Online:2008-09-20

Spartina alterniflora, native to North America, is invasive in salt marshes worldwide. Its geographic distribution in China has expanded to include most eastern coastal areas since it was introduced in 1970s. Genetic differentiation and phenotypic plasticity are two major strategies in adaptation to varying en-vironments. To investigate the mechanisms of the range expansion of S. alterniflora in China, we collected samples from ten populations on the east coast of China along a latitudinal gradient from Guangdong (22°N) to Tianjin (39°N). We grew plants singly in pots placed in an outdoor garden under either low or high water levels to explore plastic responses to varying elevation in the field. Twelve of 17 traits measured demon-strated considerable variation among populations. In particular, mean date of blossoms and the relative growth rate of height (RGRH) showed clinal variation with latitude. Our results suggested that Chinese populations of S. alterniflora might have experienced genetic differentiation. Furthermore, 9 of 17 traits showed remarkable plasticity in response to different water levels. S. alterniflora at high water level was more prolific and produced its first ramet earlier. Therefore, the successful invasion of S. alterniflora in China might have resulted from both genetic differentiation and phenotypic plasticity. The former might have facilitated its rapid range expansion on a regional scale, and the latter might have played an important role in local adaptations to habitats along an elevational gradient.

Key words: Luya Mountains, plant communities, species diversity

[1] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. (2020) Comparison of five associations of Taxus cuspidata and their species diversity . Biodiv Sci, 28(3): 340-349.
[2] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. (2020) Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake . Biodiv Sci, 28(2): 155-165.
[3] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. (2020) Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China . Biodiv Sci, 28(2): 117-127.
[4] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. (2020) Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow . Biodiv Sci, 28(2): 107-116.
[5] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[6] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. (2020) Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe . Chin J Plant Ecol, 44(1): 33-43.
[7] Zihong Chen,Yuanbing Wang,Yongdong Dai,Kai Chen,Ling Xu,Qingcheng He. (2019) Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan . Biodiv Sci, 27(9): 993-1001.
[8] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. (2019) Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests . Biodiv Sci, 27(9): 970-983.
[9] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[10] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[11] Tolgor Bau, Xueshan Wang, Peng Zhang. (2019) Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 867-873.
[12] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. (2019) Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases . Biodiv Sci, 27(7): 778-786.
[13] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. (2019) Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China . Biodiv Sci, 27(7): 813-818.
[14] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. (2019) Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China . Chin J Plant Ecol, 43(5): 427-436.
[15] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. (2019) Advances in the study of population genetic diversity at plant species’ margins . Chin J Plant Ecol, 43(5): 383-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed