Biodiversity Science ›› 2020, Vol. 28 ›› Issue (2): 107-116.doi: 10.17520/biods.2019297

• Original Papers •     Next Article

Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow

Minxia Liu(), Quandi Li, Xiaoxuan Jiang, Sujuan Xia, Xiaoning Nan, Yaya Zhang, Bowen Li   

  1. College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070
  • Received:2019-09-23 Accepted:2019-11-29 Online:2020-04-02
  • Minxia Liu E-mail:xiaminl@163.com

Rare species not only contribute to a community’s species abundance distribution pattern, but are also important contributors to alpha diversity. In this study, we studied the changes of species diversity and species abundance distribution pattern in the subalpine meadow of Gannan at different slope directions. To do this, we used means of additive allocation and RAD package of Fortran software fitting to analyze species abundance distribution pattern and α diversity to determine the contribution of rare species in species abundance distribution pattern. The results show that: (1) From southern to northern slopes, environmental factors changed greatly as the total soil phosphorus, soil organic carbon, available phosphorus, carbon-nitrogen ratio and water content increased. The ratio of nitrogen to phosphorus and soil pH showed decreasing trends. Soil total nitrogen was significantly lower in the west slope than in other slope directions, while available nitrogen has no significant difference in all aspects. (2) The influence of rare species on the community’s species diversity increased from south to north. However, compared with the scenarios of removing rare species and the condition of removing non-rare species, the effect of removing rare species in all aspects was higher than that of removing non-rare species. Therefore, the relative contribution of rare species to species diversity was higher than that of non-rare species. (3) The resource acquisition strategy of rare species was found to be random (the random fraction). However, the niche preemption model (the geometric series) is the main model for non-rare species. Due to the large dispersal capacity of rare species, the niche overlap among species will be more obvious in the communities with high species diversity. In this way, the increase of species diversity is inhibited, thus maintaining the biodiversity.

Key words: Qinghai-Tibet Plateau, species diversity, species abundance distribution pattern, rare species, resource allocation

Table 1

Overview of the experimental sample area"

坡向 Aspect 纬度 Latitude 经度 Longitude 坡度 Slope (°) 海拔 Altitude (m)
南坡 South (S) 34°58° N 102°51° E 28.5 ± 1.7a 3,001
西南坡 Southwest (SW) 34°58° N 102°51° E 29.0 ± 2.1a 3,009
西坡 West (W) 34°58° N 102°51° E 29.5 ± 2.1b 3,006
西北坡 Northwest (NW) 34°58° N 102°51° E 22 ± 2.9c 3,001
北坡 North (N) 34°58° N 102°51° E 27.5 ± 3.3c 3,000

Fig. 1

Soil environmental factors at different slope aspects in the Gannan subalpine meadow (mean ± SD). S, South; SW, Southwest; W, West; NW, Northwest; N, North. Different lowercase letters represent significant differences."

Fig. 2

Species diversity indices at different slope aspects in the Gannan subalpine meadow (mean ± SD). S, South; SW, Southwest; W, West; NW, Northwest; N, North. Different lowercase letters represent significant differences."

Fig. 3

Effects of rare species and non-rare species on species diversity at different slope aspects in the Gannan subalpine meadow (mean ± SD). S, South; SW, Southwest; W, West; NW, Northwest; N, North."

Table 2

Model fitting of rare species and non-rare species at different slope aspect in the Gannan subalpine meadow"

坡向
Aspect
拟合结果
Test result
非稀有种 Non-rare species 稀有种 Rare species
geo. lser. bro. over. rane. geo. lser. bro. over. rane.
南坡
South
R 12.76 1.82 3.15 - 12.76 8.16 2.05 12.25 - 4.09
Oc 0.80 0.80 1.15 - 0.00 0.60 0.80 2.48 - 1.00
CL 0.95 0.86 0.80 - 0.02 0.65 0.03 0.80 - 0.98
西南坡
Southwest
R 54.85 10.89 5.85 6.07 91.27 44.10 220.37 26.85 28.96 41.14
Oc 4.66 0.12 5.62 2.81 6.22 11.64 6.64 7.67 11.51 11.64
CL 1.00 0.85 0.875 0.81 1.00 0.00 0.44 0.66 1.00 1.00
西坡
West
R 18.14 389.42 53.30 43.98 20.34 13.31 380.92 421.50 747.82 248.02
Oc 1.74 38.34 16.05 20.39 1.74 14.28 161.91 106.40 359.64 550.49
CL 1.00 0.40 0.80 0.00 1.00 0.53 0.17 0.88 0.00 0.085
西北坡
Northwest
R 42.42 156.01 32.16 36.91 45.74 154.73 154.72 106.31 235.95 22.59
Oc 4.30 17.57 15.14 14.29 4.39 60.32 34.02 34.03 106.63 4.00
CL 1.00 0.25 0.92 0.91 0.91 0.21 0.89 0.89 0.00 1.00
北坡
North
R 39.88 303.2 72.83 75.73 49.43 27.50 161.06 161.62 246.23 6.33
Oc 11.37 37.36 23.43 17.12 11.37 8.47 60.69 60.69 19.75 4.23
CL 1.00 0.50 0.83 0.00 1.00 1.00 0.91 0.91 0.86 0.98

Fig. 4

Comparison of rare species (a) and non-rare species (b) based on geometric series fitting values at different slope aspects in the Gannan subalpine meadow. S, South; SW, Southwest; W, West; NW, Northwest; N, North."

[1] Aizhexiecuo (2013) Effects of Niche Partitioning, Dispersal and Spatial Structure of Meta Community on Community Repeatability. PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)
[ 艾者协措 (2013) 生态位分化、扩散和集合群落空间构型对于群落可重复性、物种稀有性和物种配置的影响. 博士学位论文, 兰州大学, 兰州.]
[2] Bao SD (2000) Analysis of Soil Agrochemistry. Agriculture Press, Beijing. (in Chinese)
[ 鲍士旦 (2000) 土壤农化分析. 农业出版社, 北京. ]
[3] Benayas R, José M, Scheiner SM (2002) Plant diversity, biogeography and environment in Iberia: Patterns and possible causal factors. Journal of Vegetation Science, 13, 245-258.
[4] Bi HT, Yang HZ, Fan LJ, Wang BY, Gao XM (2015) Analysis of species diversity of forest plant community in Funiu Mountains. Journal of Henan Agricultural University, 49(1), 88-94. (in Chinese with English abstract)
[ 毕会涛, 杨红震, 凡琳洁, 王炳焱, 高贤明 (2015) 河南省伏牛山区植物群落物种多样性分析. 河南农业大学学报 49(1), 88-94.]
[5] Chesson P (2000) Mechanisms of maintenance of the species diversity. Annual Review of Ecology & Systematics, 31, 343-366.
[6] Christopher MC, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
doi: 10.1038/nature06503 pmid: 18256670
[7] Fang JY, Shen ZH, Cui HT (2004) Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 12, 10-19. (in Chinese with English abstract)
[ 方精云, 沈泽昊, 崔海亭 (2004) 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 12, 10-19.]
[8] Freestone AL, Inouye BD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology, 87, 2425-2432.
doi: 10.1890/0012-9658(2006)87[2425:dlaehs]2.0.co;2 pmid: 17089651
[9] Gong X, Brueck K, Giese KM (2008) Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 72, 483-493.
[10] Harpole WS, Tilman D (2006) Non-nuetral pattern of species abundance in grassland communities. Ecology Letters, 9, 15-23.
doi: 10.1111/j.1461-0248.2005.00836.x pmid: 16958864
[11] He HY (2015) The Changes of Plant Species Abundance Distribution Patterns of Community with Slope Aspects and Sampling Area in Subalpine Meadow. PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)
[ 何红艳 (2015) 亚高寒草甸植物群落物种多度分布模式随坡向和取样面积的变化. 博士学位论文, 兰州大学, 兰州.]
[12] Jetz W (2002) Geographic range rize and determinants of avian species richness. Science, 297, 1548-1551.
doi: 10.1126/science.1072779 pmid: 12202829
[13] Kraft NJ, Comita LS, Chase JM, Sanders N, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJV (2011) Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science, 333, 1755-1758.
doi: 10.1126/science.1208584 pmid: 21940897
[14] Lennon JJ, Koleff P, Greenwood JJ, Gaston KJ (2004) Contribution of rarity and commonness to patterns of species richness. Ecology Letters, 7, 81-89.
doi: 10.1086/599305 pmid: 19463062
[15] Li WH, Zheng SX, Bai YF (2014) Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 38, 178-187. (in Chinese with English abstract)
[ 李文怀, 郑淑霞, 白永飞 (2014) 放牧强度和地形对内蒙古典型草原物种多度分布的影响. 植物生态学报, 38, 178-187.]
[16] Li XE (2011) Plant Functional Traits and Community Construction Mechanism on the Sunny-shady Slope Gradient of Subalpine Meadow. PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)
[ 李新娥 (2011) 亚高寒草甸阳坡‒阴坡梯度上植物功能性状及群落构建机制研究. 博士学位论文, 兰州大学, 兰州.]
[17] Li ZQ, Ouyang ZY, Zeng HQ (2010) Assessment methods for territorial biodiversity hotspot based on species richness at broad scale. Acta Ecologica Sinica, 30, 1586-1593. (in Chinese with English abstract)
[ 李智琦, 欧阳志云, 曾慧卿 (2010) 基于物种的大尺度生物多样性热点研究方法. 生态学报, 30, 1586-1593.]
[18] Liu MX (2013) Plant Community Composition and Nitrogen-Phosphorus Stoichiometry Along a Slope Aspect Gradients in an Alpine Meadow. PhD dissertation, Lanzhou University. Lanzhou. (in Chinese with English abstract)
[ 刘旻霞 (2013) 高寒草甸坡向梯度上植物群落组成及其氮磷化学计量学特征的研究. 博士学位论文, 兰州大学, 兰州.]
[19] Liu MX (2017) Response of plant element content and soil factors to the slope gradient of alpine meadows in Gannan. Acta Ecologica Sinica, 37, 8275-8284. (in Chinese with English abstract)
[ 刘旻霞 (2017) 甘南高寒草甸植物元素含量与土壤因子对坡向梯度的响应. 生态学报, 37, 8275-8284.]
[20] Liu MX, Che YD, Li LR, Jiao J, Xiao W (2017a) Redundancy analysis of leaf traits and environmental factors of alpine meadow in southern Gansu Province. Chinese Journal of Ecology, 36, 2473-2480. (in Chinese with English abstract)
[ 刘旻霞, 车应弟, 李俐蓉, 焦娇, 肖卫 (2017a) 甘南高寒草甸微地形上植物叶片特征与环境因子的冗余分析. 生态学杂志, 36, 2473-2480.]
[21] Liu MX, Wang G, Sheng HM (2013) Environmental factors characteristic of sunny and shady slope gradients in relation to above-ground biomass and species in an alpine meadow. Journal of Lanzhou University (Natural Science), 49(1), 76-81. (in Chinese with English abstract)
[ 刘旻霞, 王刚, 盛红梅 (2013) 高寒草甸阳坡-阴坡梯度上环境因子特征及其与地上生物量和物种丰富度的关系. 兰州大学学报(自然科学版), 49( 1), 76‒81.]
[22] Liu MX, Zhao RD, Zhang C, Li R, Shao P (2017b) Responses of physiological parameters in plants on sub-alpine meadow to slope aspect. Chinese Journal of Applied Ecology, 28, 2863-2869. (in Chinese with English abstract)
[ 刘旻霞, 赵瑞东, 张灿, 李瑞, 邵鹏 (2017b) 亚高寒草甸植物叶片生理指标对坡向的响应. 应用生态学报, 28, 2863-2869.]
[23] Liu Z, Li Q, Chen DD, Zhai WT, Zhao L, Xu XS, Zhao XQ (2015) Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau. Biodiversity Science, 23, 451-462. (in Chinese with English abstract)
[ 刘哲, 李奇, 陈懂懂, 翟文婷, 赵亮, 徐世晓, 赵新全 (2015) 青藏高原高寒草甸物种多样性的海拔梯度分布格局及对地上生物量的影响. 生物多样性, 23, 451-462.]
[24] Lu ZH (2018) Research on α diversity index algorithm based on Matlab2014. Agriculture and Technology, 38(17), 7‒9, 33. (in Chinese with English abstract)
[ 卢志宏 (2018) 基于Matlab2014编写α多样性指数算法研究. 农业与技术, 38(17), 7‒9, 33.]
[25] Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions Nature, 422, 50‒52.
doi: 10.1038/nature01442 pmid: 12621428
[26] Mazaris AD, Tsianou MA, Sigkounas A, Dimopoulos P, Pantis JD, Sgardelis SP, Kallimanis AS (2013) Accounting for the capacity of common and rare species to contribute to diversity spatial patterns: Is it a sampling issue or a biological effect? Ecological Indicators, 32, 9-13.
[27] Ma KM (2003) Advances of the study on species abundance pattern. Acta Phytoecologica Sinica, 27, 412-426. (in Chinese with English abstract)
[ 马克明 (2003) 物种多度格局研究进展. 植物生态学报, 27, 412-426.]
[28] Mouillot D, Leprêtre A, Andrei-Ruiz M-C, Viale D (2000) The fractal model: A new model to describe the species accumulation process and relative abundance distribution (rad). Oikos, 90, 333-342.
doi: 10.1034/j.1600-0706.2000.900214.x
[29] Nie YY, Li XE, Wang G (2010) Variation mode of a diversity and β diversity of plant community of different habitat gradients from south-facing slope to north-facing slope and its relation with different environmental factors. Journal of Lanzhou University (Natural Science), 46(3), 73-79. (in Chinese with English abstract)
[ 聂莹莹, 李新娥, 王刚 (2010) 阳坡-阴坡生境梯度上植物群落α多样性与β多样性的变化模式及与环境因子的关系. 兰州大学学报(自然科学版) 46(3), 73-79.]
[30] Rao MD, Fen G, Zhang JL, Mi XC, Chen JH (2013) Effects of environmental filtering and dispersal limitation on species and phylogenetic beta diversity in Gutianshan National Nature Reserve. Chinese Science Bulletin, 58, 1204-1212. (in Chinese with English abstract)
[ 饶米德, 冯刚, 张金龙, 米湘成, 陈建华 (2013) 生境过滤和扩散限制作用对古田山森林物种和系统发育β多样性的影响. 科学通报, 58, 1204-1212.]
[31] Reilly MJ, Wimberly MC, Newell CL (2006) Wildfire effects on plant species richness at multiple spatial scales in forest communities of the Southern Appalachians. Journal of Ecology, 94, 118-130.
[32] Sun XM, Xiao ML, Shi RL, Han F, Wang G (2014) Effects of nutrient additions on species abundance distribution in an alpine meadow in the Qinghai-Tibetan Plateau, China. Journal of Lanzhou University, 50, 853-859. (in Chinese with English abstract)
[ 孙小妹, 肖美玲, 师瑞玲, 韩非, 王刚 (2014) 营养元素添加对青藏高原亚高寒草甸物种多度分布格局的影响. 兰州大学学报, 50, 853-859.]
[33] Tetetla-Rangel E, Dupuy JM, Luis J (2017) Patterns and correlates of plant diversity differ between common and rare species in a Neotropical dry forest. Biodiversity and Conservation, 27, 1705-1721.
[34] Tsang TPN, Bonebrake TC (2016) Contrasting roles of environmental and spatial processes for common and rare urban butterfly species compositions. Landscape Ecology, 32, 47-57.
[35] Urich W, Ollik M (2004) Frequent and occasional species and the shape of relative abundance distributions. Diversity & Distribution, 10, 263-269.
[36] Wang SX, Wang XA, Li GQ, Guo H, Zhu ZH (2010) Species diversity and environmental interpretation in the process of community succession in the Ziwu Mountain of Shaanxi Province. Acta Ecologica Sinica, 30, 1638-1647. (in Chinese with English abstract)
[ 王世雄, 王孝安, 李国庆, 郭华, 朱志红 (2010) 陕西子午岭植物群落演替过程中物种多样性变化与环境解释. 生态学报, 30, 1638-1647.]
[37] Wang SX, Wang XA, Guo H, Zhang GQ, Wang S, He YJ (2018) Relative contributions of rare and common species to the multiple-scale patterns of species diversity in communities on the Loess Plateau. Acta Ecologica Sinica, 38, 8060-8069. (in Chinese with English abstract)
[ 王世雄, 王孝安, 郭华, 张广奇, 王姝, 何跃军 (2018) 稀有种和常见种对黄土高原辽东栎群落物种多样性贡献的多尺度分析. 生态学报, 38, 8060-8069.]
[38] Wang SX, Zhao L, Li N, Guo H, Wang XA, Duan RY (2016) The relative contributions of rare and common species to the patterns of species richness in plant communities. Biodiversity Science, 24, 658-664. (in Chinese with English abstract)
[ 王世雄, 赵亮, 李娜, 郭华, 王孝安, 段仁燕 (2016) 稀有种和常见种对植物群落物种丰富度格局的相对贡献. 生物多样性, 24, 658-664.]
[39] Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: Towards a general, hierarchical theory of species diversity. Journal of Biogeography, 4, 453-470.
[40] Xiao ML (2014) Species‒Abundance Distribution of Zoker Mound Plant Community Along Restoration Progress and Its Relationship with Mound Area. PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)
[ 肖美玲 (2014) 鼢鼠土丘植物群落恢复演替过程中的物种‒多度分布及其与鼠丘面积的关系. 博士学位论文, 兰州大学, 兰州.]
[1] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. (2020) Comparison of five associations of Taxus cuspidata and their species diversity . Biodiv Sci, 28(3): 340-349.
[2] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. (2020) Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake . Biodiv Sci, 28(2): 155-165.
[3] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. (2020) Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China . Biodiv Sci, 28(2): 117-127.
[4] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. (2020) Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe . Chin J Plant Ecol, 44(1): 33-43.
[5] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[6] Zihong Chen,Yuanbing Wang,Yongdong Dai,Kai Chen,Ling Xu,Qingcheng He. (2019) Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan . Biodiv Sci, 27(9): 993-1001.
[7] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[8] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[9] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. (2019) Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests . Biodiv Sci, 27(9): 970-983.
[10] Tolgor Bau, Xueshan Wang, Peng Zhang. (2019) Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 867-873.
[11] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. (2019) Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases . Biodiv Sci, 27(7): 778-786.
[12] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. (2019) Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China . Biodiv Sci, 27(7): 813-818.
[13] LI Quan-Di, LIU Min-Xia, XIA Su-Juan, NAN Xiao-Ning, JIANG Xiao-Xuan. (2019) Changes in species-abundance relationships of plant communities with slopes in alpine meadows of Gannan, China . Chin J Plant Ecol, 43(5): 418-426.
[14] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. (2019) Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China . Chin J Plant Ecol, 43(5): 427-436.
[15] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. (2019) Advances in the study of population genetic diversity at plant species’ margins . Chin J Plant Ecol, 43(5): 383-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed