Biodiversity Science ›› 2019, Vol. 27 ›› Issue (2): 149-158.doi: 10.17520/biods.2018261

• Original Papers • Previous Article     Next Article

Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China

Chen Zuoyi1, 2, Xu Xiaojing1, Zhu Suying1, Zhai Mengyi1, Li Yang1, *()   

  1. 1 Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631
    2 The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, Hebei 066001
  • Received:2018-09-28 Accepted:2019-01-27 Online:2019-04-16
  • Li Yang E-mail:liyang@scnu.edu.cn

The Chaetoceros lorenzianus complex is composed of several planktonic diatom species that share a similar morphology with C. lorenzianus Grunow. The complex has been recorded frequently in coastal waters across the world. Recently, new taxonomic information has enriched the known species diversity of the complex from 3 to 7 taxa. However, the identities of many species comprising the complex in China is still unclear. To clarify the species diversity and provide solid identification criteria for further studies, 332 monoclonal strains belonging to the C. lorenzianus complex were collected from the coast of China. With light microscopy and scanning and transmission electron microscopy, the morphologies of vegetative cells and resting spores were observed. Hypervariable D1-D3 regions of nuclear large subunit ribosomal encoded genes were amplified to construct the phylogenetic relationship. Morphological clustering was consistent with molecular systematics, which indicated that a total of 5 species are present within the C. lorenzianus complex along the coast of China; C. decipiens, C. elegans, C. laevisporus, C. mannaii and C. pauciramosus. The ultrastructure on setae, such as the shape, size and density of the setae pores, can be used as distinguishing features among allied taxa. The morphology of the resting spores also aid in accurate identification. The previous reports identifying the taxa within the C. lorenzianus complex in China need to be reexamined. Chaetoceros decipiens and C. laevisporus are the most widespread taxa along the coast of China, whereas C. pauciramosus has the narrowest distribution, having only been recorded in Taishan and Zhuhai of the Guangdong Province.

Key words: Chaetoceros lorenzianus complex, species diversity, morphology, molecular phylogeny, resting spore, coast of China

Fig. 1

Sampling sites and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China. 〇, Sampling sites; A, Bohai Sea; B, Shandong coast; C, Zhejiang coast; D, Taiwan Strait; E, Guangdong coast; F, Hainan coast."

Fig. 2

Morphology of Chaetoceros decipiens under light microscopy (LM) (A, E), scanning electron microscopy (SEM) (B-D, F, G) and transmission electron microscopy (TEM) (H-J). A-B, Broad girdle views showing fusing sibling setae base present (B, arrowheads) and not (A, arrowheads); C, Internal view of intercalary valve; D, Terminal valve with rimoportula (arrowhead) and U-shaped terminal setae; E-G, Structure of setae; H, Terminal valve with rimoportula (arrow); I, Mantle; J, Girdle bands. Scale bars, 20 μm (A), 10 μm (B, D, E), 6 μm (C), 5 μm (H), 2 μm (F, G, J), 1 μm (I)."

Fig. 3

Morphology of Chaetoceros elegans under light microscopy (LM) (A-B), scanning electron microscopy (SEM) (C-D, I-J) and transmission electron microscopy (TEM) (E-H). A, Chain in broad girdle view; B, Resting spores within the mother cells of a chain; C, Sibling intercalary valves showing overlapping silica ear-like structures (arrowhead); D, Released resting spore. E, Terminal valve with external process of rimoportula (arrowhead) and fringe (arrow); F, Parallel rows of poroids on the mantle; G, Central annulus (arrow) on terminal valve; H, Girdle bands; I and J, Seta structure. Scale bars, 20 μm (A, B), 6 μm (D), 4 μm (C), 2 μm (E, F, G, H, I, J)."

Fig. 4

Morphology of Chaetoceros laevisporus under light microscopy (LM) (A-B), scanning electron microscopy (SEM) (C-E, I-J) and transmission electron microscopy (TEM) (F-H). A, Chain in broad girdle view; B, Resting spores within the mother cells of a chain; C, Sibling intercalary valves showing overlapping silica wings (broad arrow), silica ridges (arrowhead) and furrow above the basal ring of mantle (arrow); D, A released resting spore; E, Terminal valve with central processes (arrowhead) and silica rib (arrows); F, Mantle; G, Intercalary valve with central annulus (arrow); H, Girdle bands; I and J, Setae structure. Scale bars, 50 μm (A), 20 μm (B), 4 μm (C, E), 2 μm (D, F, G, H, I, J)."

Fig. 5

Morphology of Chaetoceros mannaii under light microscopy (LM) (A, I), scanning electron microscopy (SEM) (B-E, J) and transmission electron microscopy (TEM) (F-H). A, Chain in broad girdle view; B, Sibling intercalary valves showing aperture; C, Terminal valve view with external process of rimoportula (arrowhead); D, Intercalary cells with overlapping silica wings (broad arrow), silica ridges (arrowhead) and furrow above the basal ring of mantle (arrow); E, F, Internal view of an intercalary valves, showing central annulus (F, arrow); G, Mantle; H, Girdle bands; I and J: Setae structure. Scale bars, 50 μm (A), 10 μm (B, D, I), 5 μm (F), 4 μm (C, E, J), 2 μm (G, H)."

Fig. 6

Morphology of Chaetoceros pauciramosus under light microscopy (LM) (A-B), scanning electron microscopy (SEM) (C-D, I-J) and transmission electron microscopy (TEM) (E-H). A, Chain in broad girdle view; B, Resting spores within the mother cells of a chain; C, Sibling intercalary valves showing overlapping silica ear-like structures (arrows) and furrow above the basal ring of mantle (arrowhead); D, Released resting spore; E, Terminal valve with short external tubes of rimoportulae (arrowhead) and silica rib (arrows); F, Mantle; G, Intercalary valve, showing central annulus (arrow); H, Girdle bands; I and J, Seta structure. Scale bars, 20 μm (A), 10 μm (D), 4 μm (C, D, E), 2 μm (F), 1 μm (G, H, I, J)."

Fig. 7

Molecular phylogenetic tree inferred from LSU rDNA, with Chaetoceros diadema as outgroup. Supporting values on each nodule are from Bayesian and Maximum Likelihood analysis."

Table 1

Genetic distance among allied taxa within the Chaetoceros lorenzianus complex (data in the brackets are numbers of different base pairs)"

平孢角毛藻
C. laevisporus
密特拉角毛藻
C. mitra
曼纳角毛藻
C. mannaii
并基角毛藻
C. decipiens
优美角毛藻
C. elegans
密特拉角毛藻 C. mitra 0.081 (52)
曼纳角毛藻 C. mannaii 0.105 (69) 0.047 (33)
并基角毛藻 C. decipiens 0.089 (58) 0.028 (20) 0.057 (38)
优美角毛藻 C. elegans 0.083 (53) 0.036 (25) 0.067 (44) 0.027 (17)
稀树角毛藻 C. pauciramosus 0.092 (60) 0.040 (26) 0.059 (39) 0.028 (18) 0.028 (21)

Table 2

Morphological comparison among allied taxa within Chaetoceros lorenzianus complex"

特征
Character
并基角毛藻
C. decipiens
优美角毛藻
C. elegans
平孢角毛藻
C. laevisporus
曼纳角毛藻
C. mannaii
稀树角毛藻
C. pauciramosus
密特拉角毛藻
C. mitra
洛氏角毛藻
C. lorenzianus type material
角毛孔纹形状
Seta poroid shape
椭圆形
Oval
水滴状
Drop-shaped
椭圆形
Oval
椭圆形
Oval
细长形
Elongated
圆形或椭圆形
Round or oval
圆形
Oval
角毛孔纹大小
Seta poroid size (μm)
0.3-0.6
(0.4 ± 0.1)
0.3-1.6
(0.7 ± 0.3)
0.3-0.9
(0.6 ± 0.1)
0.8-1.5
(1.1 ± 0.1)
0.1-0.6
(0.3 ± 0.1)
0.1-0.3
(0.2 ± 0.1)
Nd
Nd
角毛孔纹密度
Seta poroid number
in 10 μm
14-25
(20.2 ± 3.6)
6-27
(18.7 ± 5.0)
11-17
(14.1 ± 1.9)
6-10
(7.9 ± 1.0)
18-44
(31.7 ± 5.4)
30-56
(39.8 ± 7.4)
5-9
(7.2 ± 1.7)
Brunel 型
Brunel group
I
I
I
I
I
I
I
I
I
I
II
II
I
I
角毛基部并行融合Fusion of seta bases 有或无
Present/absent

Absent

Absent

Absent
短或无
Short/absent

Absent

Present
休眠孢子
Resting spore
未发现
Unknown
有二叉分支
Two branching processes
壳面平滑
Smooth
未发现
Unknown
有二叉分支
Two branching processes
有二叉分支
Two branching processes
有二叉分支?
Two branching processes?
窗孔形状
Aperture shape
椭圆形
Oval
圆形或四边形
Rounded or quadrangular
椭圆形
Oval
六边形
Hexagonal
六边形或花生形
Hexagonal or peanut shaped
六边形或花生形Hexagonal or peanut shaped 圆形或六边形
Oval or hexagonal
角毛基部
Basal part of setae

Lacking
有且明显
Distinct

Lacking

Short

Short

Lacking

Lacking
壳面及壳套孔纹
Poroids on valve
face and mantle

Yes

Yes

No

No

Yes

No
nd
nd
[1] Chen ZY, Li Y ( 2017) Preliminary study on some taxonomic puzzles of Chaetoceros decipiens Cleve. Acta Hydrobiologica Sinica, 41, 914-922. (in Chinese with English abstract)
doi: 10.7541/2017.114
[ 陈作艺, 李扬 ( 2017) 并基角毛藻若干分类学疑问的初步探讨. 水生生物学报, 41, 914-922.]
doi: 10.7541/2017.114
[2] Chen ZY, Lundholm N, Moestrup Ø, Kownacka J, Li Y ( 2018) Chaetoceros pauciramosus sp. nov. (Bacillariophyceae), a widely distributed brackish water species in the C. lorenzianus complex. Protist, 169, 615-631.
doi: 10.1016/j.protis.2018.06.007
[3] Chin TG, Chen JH, Huang KG ( 1965) Marine Planktonic Diatoms from China Sea, p. 115. Shanghai Science and Technology Press, Shanghai. (in Chinese)
[ 金德祥, 陈金环, 黄凯歌 ( 1965) 中国海洋浮游硅藻类, 见115页. 上海科学技术出版社, 上海.]
[4] Chin TG ( 1951) A list of Chinese diatoms from 1847 to 1946. Amoy Fishries Bulletin, 5, 145-230. (in Chinese with English abstract)
[ 金德祥 ( 1951) 中国硅藻目录. 厦门水产学报, 5, 145-230.]
[5] Chu SP, Kuo YC ( 1957) Studies on the genus Chaetoceros Ehrenberg from the fishing ground of the mackerel, Pneumatophorus japonicus (Houttuyn), off the Shantung coastal from Chefoo to Weihai. Part I. A systematic study. Oceanologia et Limnologia Sinica, 1, 27-87. (in Chinese with English abstract)
[ 朱树屏, 郭玉洁 ( 1957) 烟台、威海鲐鱼渔场及其附近海区角毛硅藻属的研究. I. 分类的研究. 海洋与湖沼, 1, 27-87.]
[6] Chu SP, Kuo YC ( 1958) Studies on the genus Chaetoceros Ehrenberg from the fishing ground of the mackerel, Pneumatophorus japonicus (Houttuyn), off the Shanung coast from Chefoo to Weihai. Part II. An ecological study. Oceanologia et Limnologia Sinica, 1, 167-179. (in Chinese with English abstract)
[ 朱树屏, 郭玉洁 ( 1958) 烟台、威海鲐鱼渔场及其附近海区角毛硅藻属的研究. II. 生态的研究. 海洋与湖沼, 1, 167-179.]
[7] Evensen DL, Hasle GR ( 1975) The morphology of some Chaetoceros (Bacillariophyceae) species as seen in the electron microscopes. Nova Hedwigia, 53, 152-174.
[8] Grunow A ( 1863) About some new and insufficiently known species and genera of diatoms. Negotiations of the Imperial Royal Zoological-Botanical Society in Vienna, 13, 137-162.
[9] Guo YJ ( 1963) The nature of Chaetoceros flora of the Yellow Sea. Oceanologia et Limnologia Sinica, 5, 322-332. (in Chinese with English abstract)
[ 郭玉洁 ( 1963) 黃海角毛藻属(Genus Chaetoceros Ehrenberg)区系的性质. 海洋与湖沼, 5, 322-332.]
[10] Guo YJ, Qian SB ( 2003) Flora Algarum Marinarum Sinicarum, Tomus V. Bacillariophyta, No.1 Centricae, pp. 345-346. Science Press, Beijing. (in Chinese)
[ 郭玉洁, 钱树本 ( 2003) 中国海藻志 (第5卷): 硅藻门 (第一册), 中心纲. 345-346页. 科学出版社, 北京.]
[11] Hall TA ( 1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
[12] Hasle GR, Syvertsen EE ( 1997) Marine diatoms. In: Identifying Marine Phytoplankton (ed. Tomas CR), pp. 5-387. Academic Press, London.
[13] Hernández-Becerril DU ( 1996) A morphological study of Chaetoceros species (Bacillariophyta) from the plankton of the Pacific Ocean of Mexico. Bulletin of the Natural History Museum (Botany series), 26, 1-73.
doi: 10.1128/JCM.01047-13
[14] Jensen KG, Moestrup ? ( 1998) The genus Chaetoceros (Bacillariophyceae) in inner Danish coastal waters. Nordic Journal of Botany, 18, 88.
doi: 10.1111/j.1756-1051.1998.tb01103.x
[15] Kooistra WHCF, Sarno D, Hernández-Becerril DU, Assmy P, Prisco CD, Montresor M ( 2010) Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerataceae (Bacillariophyta). Phycologia, 49, 471-500.
doi: 10.2216/09-59.1
[16] Kownacka J, Edler L, Gromisz S, ?otocka M, Olenina I, Ostrowska M, Piwosz K ( 2013) Non-indigenous species Chaetoceros cf. lorenzianus Grunow 1863— A new, predominant component of autumn phytoplankton in the southern Baltic Sea. Estuarine Coastal & Shelf Science, 119, 101-111.
doi: 10.1016/j.ecss.2013.01.010
[17] Li Y, Boonprakob A, Gaonkar CC, Kooistra WHCF, Lange CB, Hernández-Becerril DU, Chen ZY, Moestrup ?, Lundholm N ( 2017) Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): Three new species from warm-temperate waters. PLoS ONE, 12, 1-38.
[18] Lin GM, Yang QL ( 2007) Species diversity and the distribution of micro-phytoplankton in the Taiwan Strait. Biodiversity Science, 15, 31-45. (in Chinese with English abstract)
doi: 10.3321/j.issn:1005-0094.2007.01.003
[ 林更铭, 杨清良 ( 2007) 台湾海峡小型浮游植物的物种多样性和分布特征. 生物多样性, 15, 31-45.]
doi: 10.3321/j.issn:1005-0094.2007.01.003
[19] Lundholm N, Daugbjerg N, Moestrup ? ( 2002) Phylogeny of the Bacillariaceae with emphasis on the genus Pseudo- nitzschia (Bacillariophyceae) based on partial LSU rDNA. European Journal of Phycology, 37, 115-134.
doi: 10.1017/S096702620100347X
[20] Miller MA, Pfeiffer W, Schwartz T ( 2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp.1-8.
doi: 10.1109/GCE.2010.5676129
[21] Nylander JAA ( 2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Center, Uppsala University, Uppsala, Sweden.
[22] Okamura K ( 1911) Some littoral diatoms of Japan. Report Imperial Fisheries Institute Tokyo Japan. 7, 3-18.
[23] Rines JEB, Hargraves PE ( 1988) The Chaetoceros Ehrenberg (Bacillariophyceae) flora of Narragansett Bay, Rhode Island, USA. Bible Phycology, 79, 5-196.
[24] Ronquist F, Teslenko M, Mark P, Ayres DL, Darling A ( 2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.
doi: 10.1093/sysbio/sys029 pmid: 3329765
[25] Round FE, Crawford RM, Mann DG ( 1990) The Diatoms: Biology and Morphology of the Genera, p. 747. Cambridge University Press, Cambridge.
[26] Wang Y, Nie R, Li Y, Lü SH ( 2010) Species diversity and geographical distribution of Chaetoceros in Guangdong coast waters. Advance in Marine Science, 28, 342-352. (in Chinese with English abstract)
[ 王艳, 聂瑞, 李扬, 吕颂辉 ( 2010) 广东沿海角毛藻(Chaetoceros)的种类多样性及其地理分布. 海洋科学进展, 28, 342-352.]
[27] Xue B, Sun J, Li TT ( 2016) Phytoplankton community structure of northern South China Sea in summer of 2014. Haiyang Xuebao, 8, 54-65. (in Chinese with English abstract)
doi: 10.3969/j.issn.0253-4193.2016.04.005
[ 薛冰, 孙军, 李婷婷 ( 2016) 2014年夏季南海北部浮游植物群落结构.海洋学报, 8, 54-65.]
doi: 10.3969/j.issn.0253-4193.2016.04.005
[28] Yang Y, Sun J, Guan XY, Zhai WD, Guo SJ ( 2016) Seasonal variation of net-phytoplankton community in Bohai Sea. Marine Science Bulletin, 35, 121-131. (in Chinese with English abstract)
[ 杨阳, 孙军, 关翔宇, 翟惟东, 郭术津 ( 2016) 渤海网采浮游植物群集的季节变化. 海洋通报, 35, 121-131.]
[29] Zhai MY, Zhu SY, Chen ZY, Li Y ( 2017) Preliminary study on the species diversity of Chaetoceros lorenzianus complex from Guangdong coastal waters. Acta Hydrobiologica Sinica, 41, 1282-1290. (in Chinese with English abstract)
[ 翟梦怡, 朱素英, 陈作艺, 李扬 ( 2017) 广东沿海洛氏角毛藻复合群物种多样性的探究. 水生生物学报, 41, 1282-1290.]
[1] Zihong Chen, Yuanbing Wang, Yongdong Dai, Kai Chen, Ling Xu, Qingcheng He. (2019) Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan . Biodiv Sci, 27(9): 993-1001.
[2] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[3] Yibo Tan, Wenhui Shen, Zi Fu, Wei Zheng, Zhiyang Ou, Zhangqiang Tan, Yuhua Peng, Shilong Pang, Qinfei He, Xiaorong Huang, Feng He. (2019) Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests . Biodiv Sci, 27(9): 970-983.
[4] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[5] Tolgor Bau, Xueshan Wang, Peng Zhang. (2019) Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 867-873.
[6] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. (2019) Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases . Biodiv Sci, 27(7): 778-786.
[7] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. (2019) Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China . Biodiv Sci, 27(7): 813-818.
[8] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. (2019) Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China . Chin J Plant Ecol, 43(5): 427-436.
[9] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. (2019) Advances in the study of population genetic diversity at plant species’ margins . Chin J Plant Ecol, 43(5): 383-395.
[10] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. (2019) Species diversity and potential distribution of Chiroptera on Hainan Island, China . Biodiv Sci, 27(4): 400-408.
[11] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. (2019) Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains . Biodiv Sci, 27(2): 177-185.
[12] ZOU Xian-Hua, HU Ya-Nan, WEI Dan, CHEN Si-Tong, WU Peng-Fei, MA Xiang-Qing. (2019) Correlation between endogenous hormone and the adaptability of Chinese fir with high phosphorus-use efficiency to low phosphorus stress . Chin J Plant Ecol, 43(2): 139-151.
[13] Dai Mengmeng, Yang Kun, Li Shu, Wang Xiaodong, Song Zhaobin. (2019) Fish diversity and resource status in the Nanguang River, a tributary of upper Yangtze River . Biodiv Sci, 27(10): 1081-1089.
[14] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. (2018) Amphibian species richness patterns in karst regions in Southwest China and its environmental associations . Biodiv Sci, 26(9): 941-950.
[15] Dexin Sun, Xiang Liu, Shurong Zhou. (2018) Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow . Biodiv Sci, 26(7): 655-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed