Biodiversity Science ›› 2018, Vol. 26 ›› Issue (11): 1190-1203.doi: 10.17520/biods.2018090

• Original Papers • Previous Article     Next Article

The diversity of insect communities and its dynamic changes in transgenic RRM2 (RNA recognition motif 2) cotton fields

Shuying Li1, Jiabao Zhu1, Xianyong Lu1, Furu Cheng1, *(), Shufeng Zheng1, Jinjie Cui2, *(), Junyu Luo2, Yan Ma2   

  1. 1 Institute of Cotton Research of Anhui Academy of Agricultural Sciences, Hefei 230031
    2 Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000
  • Received:2018-03-29 Accepted:2018-07-30 Online:2019-01-08
  • Cheng Furu,Cui Jinjie E-mail:ahtccheng@tom.com;cuijinjie@126.com
  • About author:

    # Co-first authors

We evaluated the environmental safety of the transgenic RRM2 (RNA recognition motif 2) cotton on insect communities in the Changjiang River Ecological Zone. From 2013 to 2015, we recorded and systematically monitored the structure and composition, community characteristics, diversity, abundances and seasonal changes of the insect community, pest sub-community and natural enemy sub-community in the transgenic cotton fields. We found that the composition of main functional groups in transgenic cotton fields was similar to non-transgenic cotton fields. The transgenic RRM2 cotton fields had significantly higher aphid numbers than non-transgenic cotton field in 2013. In comparison, the number of cotton spider mite, cotton bollworm and other Lepidoptera were markedly lower in transgenic RRM2 cotton field than in non-transgenic cotton field in 2013. There was no significant difference in the other two years and other functional groups. We also found that abundances of insects increased, but species richness decreased, in the transgenic RRM2 cotton fields compared to the non-transgenic cotton fields during pest outbreak years. However, there was little difference of individual numbers and species richness of insect community in transgenic RRM2 cotton fields relative to non-transgenic one, but differed significantly during three years. Indices of diversity, evenness and dominance of insect community and pest sub-community did not vary by cotton type during years, the same as that of natural enemy sub-community except for that in 2013. Although there were seasonal fluctuations in the number of individuals and community characteristics of insect community, pest sub-community and natural enemies, these temporal dynamics did not vary between the RRM2 gene cotton fields and non-transgenic cotton fields. However, during peak abundances, indices of diversity and evenness of communities were at their lowest, while the reverse was true for index of dominance. Seasonal fluctuations were obvious with the insect community and pest sub-community, but that of natural enemy community varied more moderately across seasons. Overall therefore, RRM2 transgenic cotton did not significantly differ from non-transgenic cotton fields in insect community structure and composition and temporal dynamics of community characteristics, but the occurrence of insect pests in RRM2 transgenic cotton field might increase in years with suitable climate.

Key words: insect community, biodiversity, structure and composition, transgenic RRM2 cotton

Table 1

Structure and composition of insect community, pest sub-community and enemy sub-community in transgenic (HN9311) and non-transgenic (CCRI 12) cotton fields from 2013 to 2015 (mean ± SD)"

昆虫群落 Insect community 害虫亚群落 Pest sub-community 天敌亚群落 Enemy sub-community
中棉所12 CCRI 12 HN9311 中棉所12 CCRI 12 HN9311 中棉所12 CCRI 12 HN9311
个体数量
Total number
of individuals
2013 61,714 ± 16,774b 84,523 ± 32,194ab 50,349 ± 17,518b 73,071 ± 31,063ab 9,357 ± 517a 9,489 ± 708a
2014 96,567 ± 24,808a 143,572 ± 85,341a 85,174 ± 23,342a 132,614 ± 84,136a 9,723 ± 1,289a 9,398 ± 1,625a
2015 21,406 ± 2,719c 18,609 ± 4,055b 16,470 ± 2,909c 14,331 ± 3,979b 4,215 ± 173b 3,751 ± 434b
物种丰富度
Species richness
2013 47 ± 3a 46 ± 3a 22 ± 1a 22 ± 1a 21 ± 1a 19 ± 1a
2014 42 ± 2b* 37 ± 1b 18 ± 1b 16 ± 1b 18 ± 1b 16 ± 1b
2015 34 ± 3c 31 ± 1c 15 ± 1c 14 ± 1b 14 ± 1c 14 ± 1c
相对丰度
Relative
abundance (%)
2013 - - 80.3 ± 6.9ab 85.4 ± 4.1ab 16.1 ± 4.9ab 12.2 ± 3.6ab
2014 - - 88.0 ± 1.5a 89.2 ± 8.1a 10.3 ± 1.3b 8.9 ± 6.0b
2015 - - 76.6 ± 3.7b 76.4 ± 4.9b 20.0 ± 3.2a 20.7 ± 4.2a

Table 2

The individual numbers and dominance of main pest functional groups and natural enemy groups of transgenic (HN9311) and non-transgenic (CCRI 12) cotton fields from 2013 to 2015"


个体数量 Number of individual (No./100 plants) 优势度 Dominance
中棉所12 CCRI 12 HN9311 中棉所12 CCRI 12 HN9311
2013 2014 2015 2013 2014 2015 2013 2014 2015 2013 2014 2015
害虫亚群落主要类群 Main pest functional group
叶蝉类
Leafhopper
27,601.0 4,721.2 6,855.3 38,763.7 a 4,503.8 b 5,699.3 b 0.548 0.055 0.416 0.424 0.034 0.398
棉蚜 Aphid 7,568.7b 74,902.0a 6,215.3b 20,780.3* b 123,006.9 a 5,572.7 b 0.150 0.879 0.377 0.284 0.928 0.389
盲蝽类
Phytophagous bug
1,752.0 a 618.3 b 312.0 b 1,788.7 a 487.7 b 246.0 b 0.035 0.007 0.019 0.024 0.004 0.017
蓟马类 Thrip 5,987.3 a 1,804.1 b 1,419.3 b 5,862.7 a 2,009.3 b 1,444.0 b 0.119 0.021 0.086 0.080 0.015 0.101
叶螨类
Cotton spider mite
2,181.0* 724.7 490.0 480.3 692.2 340.0 0.043 0.009 0.030 0.007 0.005 0.024
烟粉虱 Whitefly 4,319.7 a 1,527.5 b 705.3c 4,829.0 a 1,377.4 b 656.0 b 0.086 0.018 0.043 0.061 0.010 0.046
棉铃虫
Cotton bollworm
121.0* a 69.1 ab 4.0 c 72.3 a 29.2 b 2.7 b 0.002 0.001 0.0002 0.001 0.0002 0.0002
红铃虫
Pink bollworm
96.7 b 306.5 a 292.0 a 56.7 b 164.2 a 166.0 a 0.002 0.004 0.018 0.001 0.001 0.012
其他鳞翅目
Other Lepidoptera pest
373.7* 275.6 52.0 154.0 a 149.8 a 45.3 b 0.007 0.003 0.003 0.002 0.001 0.003
天敌亚群落主要类群 Main natural enemy functional group
蜘蛛类 Spider 4,689.0 a 3,751.9 b 2,456.7 c 4,560.0 a 3,470.4 b 2,166.0 0.501 0.386 0.583 0.452 0.369 0.577
蚜茧蜂类
Aphidiidae
414.7 b 813.4 a 128.0 b 419.3 b 819.8 a 88.7 0.044 0.084 0.030 0.044 0.087 0.024
小花蝽类
Minute pirate bug
1,440.3 a 870.2 b 388.7 b 1,387.7 a 565.1 b 217.3 0.154 0.089 0.092 0.141 0.060 0.058
黑襟毛瓢虫
Ladybug
252.7 ab 445.1 a 133.3 b 403.3 ab 508.6 a 85.3 b 0.027 0.046 0.032 0.043 0.054 0.023
其他瓢虫
Other ladybird
1,308.0 b 2,797.4 a 818.0 b 2,007.3 ab 2,907.7 a 882.0 b 0.140 0.288 0.194 0.210 0.309 0.235
草蛉类 Lacewing 541.0 ab 711.7 a 235.3 b 364.3 b 671.6 a 158.0 b 0.058 0.073 0.056 0.038 0.071 0.042

Fig. 1

Temporal dynamics of the numbers of individuals of insect community, pest sub-community and natural enemy sub-community in transgenic (HN9311) and non-transgenic (CCRI 12) cotton fields from 2013 to 2015. A, B, C for insect community; D, E, F for pest sub-community; G, H, I for natural enemy sub-community."

Table 3

Characteristic values of the insect community, pest sub-community and enemy sub-community in transgenic (HN9311) and non-transgenic (CCRI 12) cotton fields from 2013 to 2015 (mean ± SD)"

昆虫群落 Insect community 害虫亚群落 Pest sub-community 天敌亚群落 Enemy sub-community
中棉所12 CCRI 12 HN9311 中棉所12 CCRI 12 HN9311 中棉所12 CCRI 12 HN9311
多样性指数
Diversity index
2013 1.63 ± 0.64a 1.47 ± 0.72a 1.07 ± 0.59a 0.97 ± 0.64a 1.25 ± 0.33a* 1.12 ± 0.36a
2014 1.59 ± 0.77a 1.59 ± 0.77a 0.91 ± 0.65a 0.92 ± 0.64a 1.17 ± 0.43a 1.14 ± 0.46a
2015 1.55 ± 0.58a 1.51 ± 0.55a 0.96 ± 0.53a 0.89 ± 0.56a 0.97 ± 0.41b 1.00 ± 0.41a
均匀度指数
Evenness index
2013 0.58 ± 0.20a 0.53 ± 0.23a 0.50 ± 0.25a 0.47 ± 0.28a 0.64 ± 0.12a* 0.59 ± 0.14a
2014 0.56 ± 0.24a 0.60 ± 0.26a 0.45 ± 0.25a 0.47 ± 0.30a 0.60 ± 0.14ab 0.60 ± 0.20a
2015 0.60 ± 0.18a 0.62 ± 0.19a 0.52 ± 0.27a 0.50 ± 0.28a 0.55 ± 0.21b 0.56 ± 0.22a
优势集中性指数
Dominance index
2013 0.35 ± 0.24a 0.40 ± 0.28a 0.50 ± 0.27a 0.54 ± 0.30a 0.39 ± 0.15b 0.45 ± 0.17a*
2014 0.39 ± 0.28a 0.37 ± 0.28a 0.57 ± 0.31a 0.56 ± 0.30a 0.45 ± 0.18a 0.46 ± 0.20a
2015 0.35 ± 0.22a 0.36 ± 0.21a 0.51 ± 0.26a 0.56 ± 0.27a 0.48 ± 0.19a 0.45 ± 0.20a

Fig. 2

Temporal dynamics of the diversity index of insect community, pest sub-community and natural enemy sub-community of transgenic (HN9311) and non-transgenic (CCRI 12) cotton fields from 2013 to 2015. A, B, C for insect community; D, E, F for pest sub-community; G, H, I for natural enemy sub-community."

Fig. 3

Temporal dynamics of the evenness index of insect community, pest sub-community and natural enemy sub-community of transgenic (HN9311) and non-transgenic (CCRI 12)cotton fields from 2013 to 2015. A, B, C for insect community; D, E, F for pest sub-community; G, H, I for natural enemy sub-community."

Fig. 4

Temporal dynamics of the dominance index of insect community, pest sub-community and natural enemy sub-community of transgenic (HN9311) and non-transgenic (CCRI 12) cotton fields from 2013 to 2015. A, B, C for insect community; D, E, F for pest sub-community; G, H, I for natural enemy sub-community."

[1] Adans J (1985) The definition and interpretation of guild structure in ecological communities. Journal of Animal Ecology, 54, 43-59.
[2] Barrows G, Sexton S, Zilberman D (2014) Agricultural biotechnology: The promise and prospects of genetically modified crops. Journal of Economic Perspectives, 28, 99-120.
[3] Chen DH, Ye GY, Yang CQ, Chen Y, Wu YK (2004) Effect after introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Research, 87, 235-244.
[4] Cui JJ, Xia JY (2000) Effects of transgenic Bt cotton R93-6 on the insect community. Acta Entomologica Sinica, 43, 43-51. (in Chinese with English abstract)
[崔金杰, 夏敬源 (2000) 麦套夏播转Bt基因棉R93-6对昆虫群落的影响. 昆虫学报, 43, 43-51.]
[5] Cui JJ, Luo JY, Wang CY, Li SH, Li CH (2005) Effects of transgenic Bt plus CpTI cotton on the predating functional response of main predators in cotton field. Journal of Nanjing Agricultural University, 28, 48-51. (in Chinese with English abstract)
[崔金杰, 雒珺瑜, 王春义, 李树红, 李春花 (2005) 转双价基因(Bt + CpTI)棉对棉田主要捕食性天敌捕食功能反应的影响. 南京农业大学学报, 28, 48-51.]
[6] Guo JH, Ji GZ, Li G, Zhao JN, Yang DL, Zhang GL, Yan FM, Xiu WM (2016) The impact of non-Bt genetically modified cotton on the community diversity and food-web structure of arthropods. Cotton Science, 28, 81-86. (in Chinese with English abstract)
[郭佳惠, 冀国桢, 李刚, 赵建宁, 杨殿林, 张贵龙, 闫凤鸣, 修伟明 (2016) 3种转非抗虫基因棉花田间节肢动物群落的多样性和食物网结构. 棉花学报, 28, 81-86.]
[7] Jiang WL, Ma Y, Ma XY, Xi JP, Ma YJ, Li XF (2013) Effects of transgenic glyphosate-insect resistant cotton on arthropod communities in cotton fields in Henan Province, east central China. Journal of Biosafety, 22, 51-56. (in Chinese with English abstract)
[姜伟丽, 马艳, 马小艳, 奚建平, 马亚杰, 李希风 (2013) 转基因抗草甘膦抗虫棉对棉田冠层节肢动物群落的影响. 生物安全学报, 22, 51-56.]
[8] Liu WX, Wan FH, Guo JY (2002) Structure and seasonal dynamics of arthropods in transgenic Bt cotton field. Acta Ecologica Sinica, 22, 729-735. (in Chinese with English abstract)
[刘万学, 万方浩, 郭建英 (2002) 转Bt基因棉田节肢动物群落营养层及优势类群的组成与变化. 生态学报, 22, 729-735.]
[9] Liu XL, Xu DQ, Wang W, Luo JY, Chen M, Kan HC, Liu H, Cui JJ, Tang XM, Zheng SF (2016) Relationship of canopy properties and photosynthetic characteristics with construction of lint yield in transgenic RRM2 and ACO2-E6 cotton. Cotton Science, 28, 628-634. (in Chinese with English abstract)
[刘小玲, 徐道青, 王维, 雒珺瑜, 陈敏, 阚画春, 刘华, 崔金杰, 唐雪明, 郑曙峰 (2016) 转RRM2和ACO2-E6基因棉花冠层特征和光合特性与产量形成的关系. 棉花学报, 28, 628-634.]
[10] Luo JY, Cui JJ, Wang CY, Xin HJ, Zhang S, Lü LM (2011a) Relationship between the contents of protein, soluble sugar and anthocyanidins in cotton leaf and their resistance to Apolygus lucorum Meyer-Dǜr. Journal of Northwest A & F University (Natural Science Edition), 39(8), 75-80. (in Chinese with English abstract)
[雒珺瑜, 崔金杰, 王春义, 辛惠江, 张帅, 吕丽敏 (2011a) 棉花叶片蛋白质、可溶性糖和花青素含量及其与绿盲蝽抗性的关系. 西北农林科技大学学报(自然科学版), 39(8), 75-80.]
[11] Luo JY, Cui JJ, Zhang S, Lu XJ (2011b) Effects of transgenic cotton with cry1Ac plus cry2Ab on arthropod communities. Plant Protection, 37(6), 90-92. (in Chinese with English abstract)
[雒珺瑜, 崔金杰, 张帅, 陆雪君 (2011b) 转cry1Ac + cry2Ab基因棉对棉田节肢动物群落的影响. 植物保护, 37(6), 90-92.]
[12] Luo JY, Liu CL, Zhang S, Wang CY, Lü LM, Li CH, Li FG, Cui JJ (2014) Growth vigour and yield of transgenic RRM2 (RNA recognition motif 2) cotton and their effects on arthropod community in cotton field. Chinese Journal of Plant Ecology, 38, 785-794. (in Chinese with English abstract)
[雒珺瑜, 刘传亮, 张帅, 王春义, 吕丽敏, 李春花, 李付广, 崔金杰 (2014) 转RRM2基因棉生长势和产量及对棉田节肢动物群落的影响. 植物生态学报, 38, 785-794.]
[13] Luo JY, Zhang S, Zhu XZ, Lü LM, Wang CY, Li CH, Zhang LJ, Wang L, Cui JJ (2016a) Ecological fitness of transgenic GAFP cotton and its effects on the field insect community. Chinese Journal of Applied Ecology, 27, 3675-3681. (in Chinese with English abstract)
[雒珺瑜, 张帅, 朱香镇, 吕丽敏, 王春义, 李春花, 张利娟, 王丽, 崔金杰 (2016a) 转GAFP基因棉花生态适合度及其对棉田昆虫群落的影响. 应用生态学报, 27, 3675-3681.]
[14] Luo JY, Zhang S, Lü LM, Wang CY, Zhu XZ, Li CH, Cui JJ (2016b) Effects of transgenic ACO2 cotton on growth characteristics and insect community. Acta Ecologica Sinica, 36, 6113-6121. (in Chinese with English abstract)
[雒珺瑜, 张帅, 吕丽敏, 王春义, 朱香镇, 李春花, 崔金杰 (2016b) 转ACO2基因优质棉生长特性及其对田间昆虫群落的影响. 生态学报, 36, 6113-6121.]
[15] Luo ZY (1982) Diversity analysis of arthropoda community in cotton fields of Sheshan districted and diversity effect made by insecticides. Acta Ecologica Sinica, 2, 255-266. (in Chinese with English abstract)
[罗志义 (1982) 上海佘山地区棉田节肢动物群落多样性分析及杀虫剂对多样性的研究. 生态学报, 2, 255-266.]
[16] Ma Y, Ma XY, Xi JP, Jiang WL, Ma YJ, Li XF (2011) Population dynamics of main pests and their enemies in the transgenic glyphosate-insect resistant cotton field. China Cotton, 38(10), 9-13. (in Chinese)
[马艳, 马小艳, 奚建平, 姜伟丽, 马亚杰, 李希风 (2011) 转基因抗草甘膦抗虫棉田主要害虫及其天敌的种群动态. 中国棉花, 38(10), 9-13.]
[17] Pianka ER (1979) Diversity and niche structure in desert communities plant and animal ecology. In: Arid Land Ecosystems: Structure, Functioning and Management (eds Goodall DW, Perry RA), pp. 321-330. Cambridge University Press, Cambridge.
[18] Ren YF, Wang T, Peng YF, Xia B, Qu LJ (2009) Distinguishing transgenic from non-transgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. Journal of Genetics & Genomics, 36, 621-628.
[19] Sengupta S, Patra B, Ray S, Majumder AL (2008) Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): Regulation of pinitol synthesis under abiotic stress. Plant, Cell & Environment, 31, 1442-1459.
[20] Shen ZR (2009) Insect Ecology and Ecological Principles of Integrated Pest Management. China Agricultural University Press, Beijing. (in Chinese)
[沈佐锐 (2009) 昆虫生态学及害虫防治的生态学原理. 中国农业大学出版社, 北京.]
[21] Shi PJ, Hui C, Men XY, Zhao ZH, Ouyang F, Ge F, Jin XS, Cao HF, Li BL (2014) Cascade effects of crop species richness on the diversity of pest insects and their natural enemies. Science China: Life Science, 44, 75-84. (in Chinese with English abstract)
[时培建, 惠苍, 门兴元, 赵紫华, 欧阳芳, 戈峰, 金显仕, 曹海锋, Li B. Larry (2014) 作物多样性对害虫及其天敌多样性的级联效应. 中国科学: 生命科学, 44, 75-84.]
[22] Tang DL, Wang WG, Pei XD (1996) The effect of cotton varieties on the nutrition physiology of cotton boll worm Helieoverpa armigera (Hübner). Journal of China Agricultural University, 1(3), 47-50. (in Chinese with English abstract)
[汤德良, 王武刚, 裴鑫德 (1996) 棉花品种对棉铃虫营养的影响. 中国农业大学学报, 1(3), 47-50.]
[23] Whitehouse MEA, Wilson LJ, Fitt GP (2005) A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environmental Entomology, 34, 1224-1241.
[24] Wu KM, Guo YY (2005) The evolution of cotton pest management practices in China. Annual Review of Entomology, 50, 31-52.
[25] Wu JC, Lu ZQ, Yang JS, Shu ZL (1993) Habitat niche and predation effect of natural enemies of insect pests in paddy field. Acta Entomologica Sinica, 36, 323-331. (in Chinese with English abstract)
[吴进才, 陆自强, 杨金生, 束兆林 (1993) 稻田主要捕食性天敌的栖境生态位与捕食作用分析. 昆虫学报, 36, 323-331.]
[26] Xia JY, Ma Y, Wang CY (1997) Effects of different host plants at various rates of nitrogen fertilizer on development and fecundity of the cotton bollworm, Hwlicoverpa armigera (Hübner). Acta Entomologica Sinica, 40(Suppl.), 95-102. (in Chinese with English abstract)
[夏敬源, 马艳, 王春义 (1997) 不同施氮量的寄主植物对棉铃虫发育与繁殖的影响. 昆虫学报, 40(增刊), 95-102.]
[27] Yang SY, Song FF, Xie JC (2013) Resistance of jasmonic acid-mediated cotton seedlings against the relative growth rate of Helicoverpa armigera. Journal of Northwest A & F University (Natural Science Edition), 41(5), 66-74. (in Chinese with English abstract)
[杨世勇, 宋芬芳, 谢建春 (2013) 茉莉酸诱导棉花幼苗抗虫性对棉铃虫相对生长率的影响. 西北农林科技大学学报(自然科学版), 41(5), 66-74.]
[28] Zhang GF, Wan FH, Lövei GL, Liu WY, Guo JY (2006) Transmission of Bt-toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt-cotton. Environmental Entomology, 35, 143-150.
[29] Zhou HX, Guo JY, Wan FH (2004) Effect of transgenic Cry1Ac + CpTI cotton (SGK321) on population dynamics of pests and their natural enemies. Acta Entomologica Sinica, 47, 538-542. (in Chinese with English abstract)
[周洪旭, 郭建英, 万方浩 (2004) 转Cry1Ac + CpTI基因棉对棉田害虫及其天敌种群动态的影响. 昆虫学报, 47, 538-542.]
[30] Zhou FC, Ren SX, Du YZ, Zhou GS, Shen Y (2006) Effects of Bt cotton and non-Bt cotton on development and reproduction of Bemisia tabaci (Gennadius). Acta Phytophylacica Sinica, 33, 230-234. (in Chinese with English abstract)
[周福才, 任顺祥, 杜予州, 周桂生, 沈媛 (2006) 转Bt基因棉和常规棉对烟粉虱生长发育和繁殖的影响. 植物保护学报, 33, 230-234.]
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[8] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[9] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[10] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[11] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[12] Qian Haiyuan,Yu Jianping,Shen Xiaoli,Ding Ping,Li Sheng. Diversity and composition of birds in the Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 76-80.
[13] Dai Yunchuan,Xue Yadong,Zhang Yunyi,Li Diqiang. Summary comments on assessment methods of ecosystem integrity for national parks [J]. Biodiv Sci, 2019, 27(1): 104-113.
[14] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[15] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Živa Fišer Pečnikar, Nataša Fujs, Robert Brus, Dalibor Ballian, Elena Buzan. Insights into the plastid diversity of Daphne blagayana Freyer (Thymelaeaceae)[J]. J Syst Evol, 2017, 55(5): 437 -445 .
[2] Ernesto I. Badano, Omar R. Samour-Nieva, Joel Flores, José L. Flores-Flores, Jorge A. Flores-Cano, Juan P. Rodas-Ortíz. Facilitation by nurse plants contributes to vegetation recovery in human-disturbed desert ecosystems[J]. J Plant Ecol, 2016, 9(5): 485 -497 .
[3] Zhi-Qing YANG, Bao-Zhang CHEN, Tian-Shan ZHA, Xin JIA. Relationship between photochemical reflectance index with multi-angle hyper-spectrum and light use efficiency in urban green-land ecosystems[J]. Chin J Plan Ecolo, 2016, 40(10): 1077 -1089 .
[4] Xinming Chen, Jay Dhungel, Surya P. Bhattarai, Manouchehr Torabi, Lance Pendergast, David J. Midmore. Impact of oxygation on soil respiration, yield and water use efficiency of three crop species[J]. J Plant Ecol, 2011, 4(4): 236 -248 .
[5] Yong Zeng, Chengyi Zhao, Jun Li, Yan Li, Guanghui Lv and Tong Liu. Effect of groundwater depth on riparian plant diversity along riverside-desert gradients in the Tarim River[J]. J Plant Ecol, 2019, 12(3): 564 -573 .
[6] CHEN Qing,WANG Yi-Dong,GUO Chang-Cheng,WANG Zhong-Liang. Foliar stable carbon isotope ratios of Phragmites australis and the relevant environmental factors in marsh wetlands in Tianjin[J]. Chin J Plan Ecolo, 2015, 39(11): 1044 -1052 .
[7] BU Ren-Cang, CHANG Yu, HU Yuan-Man, LI Xiu-Zhen, HE Hong-Shi. SENSITIVITY OF CONIFEROUS TREES TO ENVIRONMENTAL FACTORS AT DIFFERENT SCALES IN THE SMALL XING’AN MOUNTAINS, CHINA[J]. Chin J Plan Ecolo, 2008, 32(1): 80 -87 .
[8] Chen Hui-min, Teng Shi-yun and Yu Jia-ju. Callus Induction and Organ Formation from Young Leaf of Wheat Triticum aestivum[J]. J Integr Plant Biol, 1980, 22(2): .
[9] Zhigang Jiang. Horizon Scanning: a new method for environmental and biodiversity conservation[J]. Biodiv Sci, 2014, 22(2): 115 -116 .
[10] PAN Yu-De, Melillo J. M., Kicklighter D. W., XIAO Xiang-Ming, McGuire A. D.. Modeling Structural and Functional Responses of Terrestria Ecosystems in China to Changes in Climate and Atmospheric CO2[J]. Chin J Plan Ecolo, 2001, 25(2): 175 -189 .