Biodiversity Science ›› 2018, Vol. 26 ›› Issue (9): 962-971.doi: 10.17520/biods.2018033

• Original Papers • Previous Article     Next Article

Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation

Xueming Lei1, Fangfang Shen1, Xuechen Lei1, Wenfei Liu1, Honglang Duan1, Houbao Fan1, Jianping Wu2, *()   

  1. 1 Jiangxi Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099;
    2 Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming 650091
  • Received:2018-02-01 Accepted:2018-05-24 Online:2019-01-05
  • Wu Jianping E-mail:jianping.wu@ynu.edu.cn
  • About author:

    # Co-first authors

Soil microorganisms have been recognized as important decomposers that link above- and below-ground processes in terrestrial ecosystems. In this study, we conducted an experiment to assess the influence of canopy nitrogen deposition and understory removal in a Cunninghamia lanceolata plantation. The effects of four treatments, i.e. control (CK), understory removal (UR), nitrogen deposition (N) and nitrogen deposition plus understory removal (N × UR) on soil microbial community were investigated using phospholipid fatty acids (PLFAs). Soil samples (0-10 layer) were collected in April (spring) and October (autumn), 2016. Results showed that the total soil microbial PLFAs and the other groups (bacteria, fungi and actinomycete) of soil microbial PLFAs in autumn were significantly higher than those in spring, but fungi/bacteria ratio did not change significantly between two sampling seasons. Bacteria dominated among different PLFAs groups, followed by fungi and actinomycetes. Relative to CK treatment, UR treatment had slightly higher total PLFAs, bacterial PLFAs, gram negative bacterial PLFAs and actinomycetes PLFAs although not significant at 0.05 level. Shannon-Wiener and Pielou indices of UR, N and N × UR treatments decreased in April whereas Shannon-Wiener index was higher in October. Soil nitrate nitrogen and total phosphorus were significantly correlated with soil microbial community based on redundancy analysis. No significant effect of nitrogen deposition was observed probably due to the short period of study. But understory removal seems to promote the impact of nitrogen deposition. Seasonal variations were detected in this study suggesting that long-term experiments are required to explore the continuing effects of environmental changes on soil microbial communities and their functions.

Key words: soil microbial community, biodiversity, nitrogen deposition, understory removal, Cunninghamia lanceolata plantation

Table 1

Soil microbes as indicated by phospholipid fatty acids (PLFAs)"

微生物类型 Microbial group 特征磷脂脂肪酸 Phospholipids fatty acid characteristics 参考文献 References
细菌 Bacteria i15:0, a15:0, 15:0, i16:0, 16:1 ω9c, 16:1 ω7c,
16:1 ω7t, i17:0, 17:0, a17:0, cy 17:0, 18:1 ω5c,
18:1 ω7c, i19:0, cy 19:0
Frostegård & Bååth, 1996; Zogg et al, 1997; Marhan et al, 2007; Wu et al, 2013a, b
革兰氏阳性菌
Gram-positive bacteria
i14:0, i15:0, a15:0, i16:0, i17:0, a17:0 Zak et al, 1996; Yang et al, 2016
革兰氏阴性菌
Gram-negative bacteria
16:1 ω7c, cy 17:0, 18:1 ω7c, cy 19:0 Zak et al, 1996; Wu et al, 2013a, b
真菌 Fungi 18:1 ω9c, 18:2 ω6c, 18:3 ω6c Frostegård & Bååth, 1996
放线菌 Actinomycetes 10Me 16:0, 10Me 17:0, 10Me 18:0 Zak et al, 1996

Table 2

Soil physical-chemical properties under different treatments"

处理
Treatment
含水率
SWC (%)
pH 有机碳
SOC (g/kg)
全氮
TN (g/kg)
全磷
TP (g/kg)
硝态氮
NO3--N (mg/kg)
铵态氮
NH4+-N (mg/kg)
速效磷
AP (mg/kg)
春季
Spring
CK 40.85 ± 2.14Aa 4.45 ± 0.11Aa 41.16 ± 3.55Aa 2.29 ± 0.19Aa 0.19 ± 0.01Bab 0.06 ± 0.01Ab 10.97 ± 1.21 Aa 5.20 ± 0.60Aa
UR 40.80 ± 4.38 Aa 4.35 ± 0.01Aa 36.08 ± 2.86Aa 2.04 ± 0.16Aab 0.21 ± 0.01Ba 0.05 ± 0.01Ab 10.74 ± 1.07Aa 4.91 ± 0.99Aa
N 32.26 ± 2.41Aa 4.34 ± 0.01Aa 30.74 ± 4.77Aa 1.70 ± 0.21Ab 0.17 ± 0.01Bb 0.09 ± 0.04Ab 12.79 ± 2.47Aa 3.37 ± 0.55Aa
N × UR 33.76 ± 2.16Aa 4.40 ± 0.01Aa 38.53 ± 2.82Aa 2.20 ± 0.13Aab 0.20 ± 0.01Bab 0.21 ± 0.07Aa 15.29 ± 1.65Aa 4.04 ± 0.52Aa
秋季
Autumn
CK 38.99 ± 3.26Aa 4.70 ± 0.19Aa 37.92 ± 5.78Aa 1.75 ± 0.62Aa 0.83 ± 0.09Aa 0.20 ± 0.05Aa 3.80 ± 0.35Ba 1.38 ± 0.72Ba
UR 34.81 ± 1.54Aa 4.39 ± 0.06Aa 37.73 ± 7.78Aa 2.15 ± 0.53Aa 0.57 ± 0.11Ab 0.15 ± 0.02Aa 4.46 ± 0.32Ba 3.46 ± 1.07Aa
N 32.35 ± 2.12Aa 4.37 ± 0.03Aa 28.57 ± 3.95Aa 2.03 ± 0.46Aa 0.55 ± 0.07Ab 0.22 ± 0.02Aa 4.22 ± 0.40Ba 0.98 ± 0.33Ba
N × UR 35.75 ± 2.73Aa 4.35 ± 0.05Aa 34.81 ± 1.76Aa 2.20 ± 0.30Aa 0.87 ± 0.10Aab 0.33 ± 0.09Aa 4.21 ± 0.36Ba 2.52 ± 1.01Aa

Table 3

The amount of soil microbial phospholipid fatty acids (PLFAs) under different treatments (unit: nmol/g)"

处理
Treatment
微生物总量
Total PLFAs
细菌量
Bacterial PLFAs
革兰氏阳性菌
量 G+ PLFAs
革兰氏阴性菌
量 G- PLFAs
真菌量
Fungal PLFAs
放线菌量
Actinomycetes PLFAs
真菌:细菌
F/B ratio
春季
Spring
CK 75.01 ± 5.44Ba 21.02 ± 1.47Aa 10.21 ± 0.61Ba 8.21 ± 0.61Aa 8.07 ± 1.21Aa 4.91 ± 0.29Aa 0.38 ± 0.04Aa
UR 78.63 ± 4.87Ba 22.37 ± 2.15Aa 11.87 ± 0.73Ba 7.97 ± 0.94Aa 7.80 ± 1.80Aa 5.42 ± 0.31Aa 0.34 ± 0.06Aa
N 71.09 ± 12.45Ba 20.06 ± 4.30Aa 9.89 ± 2.30Ba 7.58 ± 1.52Aa 7.80 ± 1.53Aa 4.83 ± 1.14Aa 0.40 ± 0.01Aa
N × UR 58.14 ± 7.12Ba 16.44 ± 2.40Ba 8.40 ± 1.41Ba 5.92 ± 0.72Ba 5.54 ± 0.54Ba 3.63 ± 0.68Ba 0.35 ± 0.02Aa
秋季
Autumn
CK 132.03 ± 10.74Ab 25.58 ± 1.59Aa 22.38 ± 2.08Aa 8.63 ± 0.78Aa 8.56 ± 1.16Aa 5.69 ± 0.26Aa 0.34 ± 0.05Aa
UR 166.28 ± 9.36Aa 28.11 ± 2.60Aa 24.90 ± 2.23Aa 9.58 ± 1.21Aa 10.62 ± 0.68Aa 6.02 ± 0.39Aa 0.38 ± 0.02Aa
N 134.77 ± 14.07Aab 26.24 ± 2.39Aa 22.96 ± 2.75Aa 8.51 ± 0.87Aa 9.66 ± 1.04Aa 5.87 ± 0.87Aa 0.37 ± 0.03Aa
N × UR 128.27 ± 10.60Ab 26.97 ± 3.75Aa 22.26 ± 1.88Aa 9.07 ± 1.40Aa 9.99 ± 1.14Aa 6.04 ± 0.90Aa 0.38 ± 0.04Aa

Table 4

The effects of nitrogen deposition, understory removal, the interactions between nitrogen deposition and understory removal and seasons on soil microbial phospholipid fatty acids (PLFAs) analyzed by Three-Way ANOVA"

变量 Variables N UR N × UR 季节 Season
F P F P F P F P
微生物总量 Total PLFAs 3.736 0.077 0.383 0.548 3.220 0.098 54.433 < 0.001
细菌量 Bacterial PLFAs 0.864 0.371 0.016 0.902 0.733 0.409 11.335 0.003
革兰氏阳性菌量 G+ PLFAs 1.431 0.255 0.166 0.691 1.691 0.218 88.942 < 0.001
革兰氏阴性菌量 G- PLFAs 1.365 0.265 0.020 0.891 0.412 0.533 4.105 0.055
真菌量 Fungal PLFAs 0.510 0.489 0.002 0.965 1.628 0.226 8.117 0.009
放线菌量 Actinomycetes PLFAs 0.772 0.397 0.010 0.922 0.968 0.345 5.481 0.029
真菌: 细菌 F/B ratio 0.246 0.629 0.089 0.771 0.199 0.663 0.004 0.953

Fig. 1

Relative abundance of the soil microbial PLFAs under different treatments. (1) CK, Control; UR, Understory removal; N, Nitrogen deposition; N × UR, Interactions between nitrogen deposition and understory removal; (2) G+, Gram-positive bacteria; G-, Gram-negative bacteria; F, Fungi; A, Actinomycetes."

Table 5

Diversity indices of soil microbial phospholipid fatty acids (PLFAs) under different treatments"

处理
Treatment
春季 Spring 秋季 Autumn
Shannon-
Wiener (H°)
Pielou (J) Shannon-
Wiener (H°)
Pielou index (J)
CK 1.53 ± 0.02Aa 0.46 ± 0.01Aa 1.40 ± 0.01Ba 0.42 ± 0.01Aa
UR 1.46 ± 0.05Aab 0.45 ± 0.01Aa 1.46 ± 0.02Aa 0.41 ± 0.01Aa
N 1.47 ± 0.05Aab 0.44 ± 0.02Aa 1.41 ± 0.02Aa 0.42 ± 0.01Aa
N × UR 1.36 ± 0.02Ab 0.42 ± 0.01Ab 1.43 ± 0.01Aa 0.43 ± 0.01Aa

Fig.2

Redundancy analysis (RDA) of soil microbial community structure and soil environmental factors. ? CK, Control, £ UR, Understory removal; ¯ N, Nitrogen deposition; r N × UR, Interactions between nitrogen deposition and understory removal, where hollow and solid were expressed as sampling in spring and autumn, respectively."

[1] Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
[2] Chu HY, Wang YF, Shi Y, Lü XT, Zhu YG, Han XG (2017) Current status and development trend of soil microbial biogeography. Bulletin of Chinese Academy of Sciences, 32, 585-592. (in Chinese with English abstract)
[褚海燕, 王艳芬, 时玉, 吕晓涛, 朱永官, 韩兴国 (2017) 土壤微生物生物地理学研究现状与发展态势. 中国科学院院刊, 32, 585-592.]
[3] Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171.
[4] Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65.
[5] Fu X, Yang F, Wang J, Di Y, Dai X, Zhang X, Wang H (2015) Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment, 502, 280-286.
[6] Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martineli LA, Seitzinqer SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
[7] Ge F (2002) Modern Ecology. Science Press, Beijing. (in Chinese)
[戈峰 (2002) 现代生态学. 科学出版社, 北京.]
[8] He TX, Li YP, Zhang FY, Wang QK (2015) Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation. Chinese Journal of Plant Ecology, 39, 797-806. (in Chinese with English abstract)
[贺同鑫, 李艳鹏, 张方月, 王清奎 (2015) 林下植被剔除对杉木林土壤呼吸和微生物群落结构的影响. 植物生态学报, 39, 797-806.]
[9] He YL, Fu MY (2002) Review of studies on understorey of plantations. Forest Research, 15, 727-733. (in Chinese with English abstract)
[何艺玲, 傅懋毅 (2002) 人工林林下植被的研究现状. 林业科学研究, 15, 727-733.]
[10] Hong PZ, Liu SR, Yu HL, Hao J (2016) Effects of simulated nitrogen deposition on soil microbial biomass and community structure in a young plantation of Castanopsis hystrix. Journal of Shandong University (Natural Science), 51, 18-28. (in Chinese with English abstract)
[洪丕征, 刘世荣, 于浩龙, 郝建 (2016) 模拟氮沉降对红椎人工幼龄林土壤微生物生物量和微生物群落结构的影响. 山东大学学报(理学版), 51, 18-28.]
[11] Houle D, Moore JD (2008) Soil solution, foliar concentrations and tree growth response to 3-year of ammonium-nitrate addition in two boreal forests of Québec, Canada. Forest Ecology and Management, 255, 2049-2060.
[12] Huang XR, Guo PP, Wu WW, Hu BY, Yi ZG (2016) Influence of simulated nitrogen deposition enhancement on soil microbial community of different tree species. Chinese Journal of Ecology, 35, 1420-1426. (in Chinese with English abstract)
[黄幸然, 郭萍萍, 吴旺旺, 胡宝叶, 易志刚 (2016) 模拟氮沉降增加对不同树种土壤微生物群落结构的影响. 生态学杂志, 35, 1420-1426.]
[13] Huang YM, Yang WQ, Zhang J, Lu CT, Liu X, Wang W, Guo W, Zhang DJ (2014) Response of soil microorganism and soil enzyme activity to understory plant removal in the subalpine coniferous plantation of western Sichuan. Acta Ecologica Sinica, 34, 4183-4192. (in Chinese with English abstract)
[黄玉梅, 杨万勤, 张健, 卢昌泰, 刘旭, 王伟, 郭伟, 张丹桔 (2014) 川西亚高山针叶林土壤微生物及酶对林下植物去除的响应. 生态学报, 34, 4183-4192.]
[14] Irenem U, Annc K, Rosemarie M (2009) Flooding effects on soil microbial communities. Applied Soil Ecology, 42, 1-8.
[15] Lin GG, Zhao Q, Zhao L, Li HC, Zeng DH (2012) Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin sandy land. Chinese Journal of Applied Ecology, 23, 1188-1194. (in Chinese with English abstract)
[林贵刚, 赵琼, 赵蕾, 李慧超, 曾德慧 (2012) 林下植被去除与氮添加对樟子松人工林土壤化学和生物学性质的影响. 应用生态学报, 23, 1188-1194.]
[16] Liu CX, Jiao RZ, Dong YH, Sun QW, Zhou XW, Li FQ (2015) Effect of nitrogen deposition on soil microbial community structure determined with the PLFA metod. Scientia Silvae Sinicae, 51(6), 155-162. (in Chinese with English abstract)
[刘彩霞, 焦如珍, 董玉红, 孙启武, 周新武, 李峰卿 (2015) 应用PLFA方法分析氮沉降对土壤微生物群落结构的影响. 林业科学, 51(6), 155-162.]
[17] Liu WF, Fan HB (2011) Impacts of nitrogen deposition on C, N, and P fluxes in the litterfall of Chinese fir plantation. Scientia Silvae Sinicae, 47(3), 89-95. (in Chinese with English abstract)
[刘文飞, 樊后保 (2011) 杉木人工林凋落物C, N, P归还量对氮沉降的响应. 林业科学, 47(3), 89-95.]
[18] Liu WQ, Liu BY, Wang J, Lei CY (2010) Responses of soil microbial communities to moss cover and nitrogen addition. Acta Ecologica Sinica, 30, 1691-1698. (in Chinese with English abstract)
[刘蔚秋, 刘滨扬, 王江, 雷纯义 (2010) 不同环境条件下土壤微生物对模拟大气氮沉降的响应. 生态学报, 30, 1691-1698.]
[19] Lu RK (1998) Soil Agrochemistry Analysis Protocoes. China Agricultural Science and Technology Press, Beijing. (in Chinese)
[鲁如坤 (1998) 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[20] Lu YH (2015) Recent development of soil microbiology and future perspectives. Bulletin of Chinese Academy of Sciences, 30, 257-265. (in Chinese with English abstract)
[陆雅海 (2015) 土壤微生物学研究现状与展望. 中国科学院院刊, 30, 257-265.]
[21] Luo D, Shi ZM, Tang JC, Liu SR, Lu LH (2014) Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China. Chinese Journal of Applied Ecology, 25, 2543-2550. (in Chinese with English abstract)
[罗达, 史作民, 唐敬超, 刘世荣, 卢立华 (2014) 南亚热带乡土树种人工纯林及混交林土壤微生物群落结构. 应用生态学报, 25, 2543-2550.]
[22] Marhan S, Kandeler E, Scheu S (2007) Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L. (Oligochaeta, Lumbricidae). Applied Soil Ecology, 35, 421-422.
[23] Matsushima M, Chang SX (2007) Effects of understory removal, N fertilization, and litter layer removal on soil N cycling in a 13-year-old white spruce plantation infested with Canada bluejoint grass. Plant and Soil, 292, 243-258.
[24] Michaels S, Johannes R (2010) Considering fungal: Bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42, 1385-1395.
[25] Moore-Kucera J, Dick RP (2008) PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas fir chronosequence. Microbial Ecology, 55, 500-511.
[26] Nilsson LO, Bååth E, Falkengrengrerup U, Wallander H (2007) Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia, 153, 375-384.
[27] Schadt C, Martin A, Lipson D, Schmidt S (2003) Seasonal dynamics of previously unknown fungal lineages in Tundra soil. Science, 301, 1359-1361.
[28] Sun ZY, Huang YH, Yang L, Schaefer V, Chen YQ (2017) Plantation age, understory vegetation, and species-specific traits of target seedlings alter the competition and facilitation role of Eucalyptus in South China. Restoration Ecology, 31, 1-10.
[29] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737-750.
[30] Wan SZ, Zhang CL, Chen YQ, Zhao J, Wang XL, Wu JP, Zhou LX, Lin YB, Liu ZF, Fu SL (2014) The understory fern Dicranopteris dichotoma facilitates the overstory Eucalyptus trees in subtropical plantations. Ecosphere, 5(5), 51.
[31] Wang FM, Zou B, Li HF, Li ZA (2014) The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations. Journal of Forest Research, 19, 238-243.
[32] Wei XH, Blanco JA, Jiang H, Kimmins JPH (2012) Effects of nitrogen deposition on carbon sequestration in Chinese fir forest ecosystems. Science of the Total Environment, 416, 351-361.
[33] Wu JP, Liu WF, Fan HB, Huang GM, Wan SZ, Yuan YH, Ji CF (2013a) Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest. Ecology and Evolution, 3, 3895-3905.
[34] Wu JP, Liu ZF (2014) Effects of abiotic factors on forest net ecosystem production. Plant Science Journal, 32, 97-104.
[吴建平, 刘占锋 (2014) 环境因子对森林净生态系统生产力的影响. 植物科学学报, 32, 97-104.]
[35] Wu JP, Liu ZF, Huang GM, Chen DM, Zhang WX, Shao YH, Wan SZ, Fu SL (2014) Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages. Scientific Reports, 4, 6262.
[36] Wu JP, Liu ZF, Sun YX, Zhou LX, Lin YB, Fu SL (2013b) Introduced Eucalyptus urophylla plantations change the composition of the soil microbial community in subtropical China. Land Degradation and Development, 24, 400-406.
[37] Wu JP, Liu ZF, Wang XL, Sun YX, Zhou LX, Lin YB, Fu SL (2011) Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Functional Ecology, 25, 921-931.
[38] Yang W, Yan YE, Jiang F, Leng X, Chen XL, An SQ (2016) Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora, invasion in a coastal wetland of eastern China. Plant and Soil, 408, 1-14.
[39] Yin K, Zhang L, Chen D, Tian Y, Zhang F, Wen M, Yuan C (2016) Understory herb layer exerts strong controls on soil microbial communities in subtropical plantations. Scientific Reports, 6, 27066.
[40] Yuan YH, Fan HB, Li HX, Liu WF, Shen FF, Guo HB (2012) Effects of simulated nitrogen deposition on soil microorganism in a Chinese fir plantation. Scientia Silvae Sinicae, 48(9), 8-14. (in Chinese with English abstract)
[袁颖红, 樊后保, 李辉信, 刘文飞, 沈芳芳, 郭虎波 (2012) 模拟氮沉降对杉木人工林土壤微生物的影响. 林业科学, 48(9), 8-14.]
[41] Yuan YH, Fan HB, Liu WF, Huang RZ, Shen FF, Hu F, Li HX (2013) Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation. Soils, 45, 120-128. (in Chinese with English abstract)
[袁颖红, 樊后保, 刘文飞, 黄荣珍, 沈芳芳, 胡锋, 李辉信 (2013) 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响. 土壤, 45, 120-128.]
[42] Zak DR, Ringelberg DB, Pregizter KS, Randlett DL, White DC, Curtis P (1996) Soil microbial communities beneath Populus grandidentata crown under elevated atmospheric CO2. Ecological Applications, 6, 257-262.
[43] Zeng J, Liu XJ, Song L, Lin XG, Zhang HZ, Shen CC, Chu HY (2016) Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 92, 41-49.
[44] Zeng QP, He BH (2016) Effect of nitrogen deposition on soil microbial community structure determined with the PLFA method under the Masson Pine forest from Mt. Jinyun, Chongqing. Environmental Science, 37, 3590-3597. (in Chinese with English abstract)
[曾清苹, 何丙辉 (2016) 应用PLFA法分析氮沉降对缙云山马尾松林土壤微生物群落结构的影响. 环境科学, 37, 3590-3597.]
[45] Zhang JJ, Li YG, Chang SX, Jiang PK, Zhou GM, Liu J, Wu JS, Shen ZM (2014) Understory vegetation management affected greenhouse gas emissions and labile organic carbon pools in an intensively managed Chinese chestnut plantation. Plant and Soil, 376, 363-375.
[46] Zhao J, Wan SZ, Li ZA, Shao YH, Xu GL, Liu ZF, Zhou LX, Fu SL (2012) Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region. Soil Biology and Biochemistry, 49, 78-87.
[47] Zhu YG, Shen RF, He JZ, Wang YF, Han XG, Jia ZJ (2017) China soil microbiome initiative: Progress and perspective. Bulletin of Chinese Academy of Sciences, 32, 554-565. (in Chinese with English abstract)
[朱永官, 沈仁芳, 贺纪正, 王艳芬, 韩兴国, 贾仲君 (2017) 中国土壤微生物组: 进展与展望. 中国科学院院刊, 32, 554-565.]
[48] Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America, 61, 475-481.
[1] Lintao Huang Hui Huang Lei Jiang. (2020) A revised taxonomy for Chinese hermatypic corals . Biodiv Sci, 28(4): 515-523.
[2] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. (2020) Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China . Biodiv Sci, 28(2): 219-225.
[3] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. (2020) Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity . Biodiv Sci, 28(2): 244-252.
[4] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. (2020) The updated checklists of amphibians and reptiles of China . Biodiv Sci, 28(2): 189-218.
[5] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. (2020) Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China . Biodiv Sci, 28(2): 226-230.
[6] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. (2020) Threat status of non-lichenized macro-ascomycetes in China and its threatening factors . Biodiv Sci, 28(1): 26-40.
[7] Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. (2020) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 99-106.
[8] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[9] Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[10] Rui Yang,Qinyi Peng,Yue Cao,Le Zhong,Shuyu Hou,Zhicong Zhao,Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[11] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. (2019) Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China . Chin J Plant Ecol, 43(9): 783-792.
[12] Yongmin Li,Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
[13] Junning Li, Tong Li, Yulian Wei. (2019) Relationship between diversity of wood-decaying fungi and their host wood in the Fenglin National Nature Reserve . Biodiv Sci, 27(8): 880-886.
[14] Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. (2019) Xishuangbanna cucumber landraces and associated traditional knowledge . Biodiv Sci, 27(7): 743-748.
[15] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. (2019) Spring and autumn shrimp and crab biodiversity in the east Nanji Islands . Biodiv Sci, 27(7): 787-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed