Biodiversity Science ›› 2018, Vol. 26 ›› Issue (3): 248-257.doi: 10.17520/biods.2018027

• Original Papers: Animal Diversity • Previous Article     Next Article

Faunal communities of deep soil layers in suburban Beijing

Wei Mo1, 2, Zhiliang Wang2, You Li2, Jianjun Guo1, 2, *(), Runzhi Zhang2, 3, *()   

  1. 1 Institute of Entomology, Guizhou University, Guiyang 550025
    2 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-01-29 Accepted:2018-03-23 Online:2018-05-05
  • Guo Jianjun,Zhang Runzhi E-mail:jjguo@gzu.edu.cn;zhangrz@ioz.ac.cn
  • About author:

    # Co-first authors

In order to reveal composition of faunal communities in deep soil, we investigated soil at 30 and 55 cm at the Olympic Campus of the Chinese Academy of Sciences in a suburb of Beijing using trap collectors. A total of 10,163 individuals representing 20 orders belonging to ten classes and three phyla were captured in eight surveys carried out over five years. The dominant groups were Hymenoptera (61.0%), Acarina (12.1%) and Collembola (11.2%). The individuals and groups in the 30 cm soil layer were greater than at 55 cm. The dominant group of the 30 cm soil layer was Hymenoptera (69.4%) while at 55 cm, Hymenoptera (45.7%), Acarina (21.8%) and Collembola (16.4%) were all dominant. The number of individuals and groups recorded from April to October was greater than October to April of the next year. Annelida appeared only between October to April of the next year, while Thysanoptera, Psocoptera, Dermaptera appeared only between April to October. The lowest Jaccard value of soil faunal communities in different vegetation forms was 0.75. None of Shannon-Wiener diversity index, Simpson dominance index and Pielou evenness index showed significant differences between different vegetation types (P > 0.05). The results showed that there were abundant soil faunal communities in deep soil. The number of individuals and groups decreased with increasing soil depth. Soil faunal community structure was different in different seasons and the composition was highly similar between different vegetation types.

Key words: soil animal, community structure, deep soil, diversity, treelawn

Fig. 1

Trap collector of samples"

Table 1

The composition of animal communities in soil of Olympic Campus of Chinese Academy of Sciences"

Table 2

The composition of animal communities of deep soil layer in different seasons of Olympic Campus of Chinese Academy of Sciences"

夏秋季 April to October 冬春季 October to April of the next year
个体数
Individuals
% 优势度
Dominance
个体数
Individuals
% 优势度
Dominance
膜翅目 Hymenoptera 3,719 69.7 +++ 1,413 48.7 +++
同翅目 Homoptera 142 2.7 ++ 114 3.9 ++
鞘翅目 Coleoptera 77 1.4 ++ 83 2.9 ++
双翅目 Diptera 154 2.9 ++ 146 5 ++
半翅目 Hemiptera 4 0.1 + 2 0.1 +
直翅目 Orthoptera 38 0.7 + 2 0.1 +
缨翅目 Thysanoptera 2 0 +
啮虫目 Psocoptera 1 0 +
革翅目 Dermaptera 2 0 +
石蜈蚣目 Lithobiomorpha 74 1.4 ++ 32 1.1 ++
地蜈蚣目 Geophilomorpha 7 0.1 + 17 0.6 +
蜱螨目 Acarina 572 10.7 +++ 406 14 +++
蜘蛛目 Araneae 42 0.8 + 24 0.8 +
带马陆目 Polydesmida 15 0.3 + 10 0.3 +
弹尾目 Collembola 264 4.9 ++ 548 18.9 +++
双尾目 Diplura 73 1.4 ++ 37 1.3 ++
等足目 Isopoda 93 1.7 ++ 51 1.8 ++
综合目 Symphyla 16 0.3 + 1 0 +
柄眼目 Stylommatophora 43 0.8 + 12 0.4 +
后孔寡毛目 Opisthopora 1 0 +
总数 Total 5,338 2,899

Table 3

The composition of animal communities of deep soil layer in different treelawn of Olympic Campus of Chinese Academy of Sciences"

类群
Group
草本型 Lawn 灌木型 Shrubbery 乔木型 Arboreal forest 混合型 Mixed forest 食性
Feeding habit
个体数
Indivi-
duals
% 优势度
Domi-
nance
个体数
Indivi-
duals
% 优势度
Domi-
nance
个体数
Indivi-
duals
% 优势度
Domi-
nance
个体数
Indivi-
duals
% 优势度
Domi-
nance
膜翅目 Hymenoptera 778 49.1 +++ 1,397 49.7 +++ 1,732 66.3 +++ 2,288 72.5 +++ O
同翅目 Homoptera 67 4.2 ++ 129 4.6 ++ 113 4.3 ++ 9 0.3 + O
鞘翅目 Coleoptera 52 3.3 ++ 60 2.1 ++ 69 2.6 ++ 30 1 ++ Pr
双翅目 Diptera 24 1.5 ++ 55 2 ++ 210 8 ++ 30 1 ++ S
半翅目 Hemiptera 2 0.1 + 2 0.1 + 2 0.1 + Ph
直翅目 Orthoptera 4 0.3 + 3 0.1 + 16 0.6 + 17 0.5 + Ph
缨翅目 Thysanoptera 2 0.1 + Ph
啮虫目 Psocoptera 1 0.1 + Ph
革翅目 Dermaptera 2 0.1 + O
石蜈蚣目 Lithobiomorpha 29 1.8 ++ 65 2.3 ++ 26 1 ++ 19 0.6 + Pr
地蜈蚣目 Geophilomorpha 7 0.4 + 24 0.9 + 3 0.1 + 5 0.2 + Pr
蜱螨目 Acarina 230 14.5 +++ 511 18.2 +++ 138 5.3 ++ 347 11 +++ O
蜘蛛目 Araneae 6 0.4 + 38 1.4 ++ 27 1 ++ 10 0.3 + Pr
带马陆目 Polydesmida 2 0.1 + 14 0.5 + 13 0.5 + 5 0.2 + Ph
弹尾目 Collembola 283 17.9 +++ 282 10 +++ 235 9 ++ 337 10.7 +++ O
双尾目 Diplura 44 2.8 ++ 83 3 ++ 15 0.6 + 15 0.5 + D
等足目 Isopoda 25 1.6 ++ 100 3.6 ++ 5 0.2 + 14 0.4 + S
综合目 Symphyla 16 1 ++ 4 0.1 + 5 0.2 + 8 0.3 + Pr
柄眼目 Stylommatophora 13 0.8 + 45 1.6 ++ 4 0.2 + 14 0.4 + Ph
后孔寡毛目 Opisthopora 1 0 + 2 0.1 + S
总数 Total 1,583 2,813 2,613 3,154

Fig. 2

Ecological indices of animal communities of deep soil layer in different treelawn type of Olympic Campus of Chinese Academy of Sciences (mean ± SE)"

Table 4

Jaccard index of animal communities of deep soil layer in different treelawn type of Olympic Campus of Chinese Academy of Sciences"

绿化带类型
Treelawn
灌木型
Shrubbery
乔木型
Arboreal forest
混合型
Mixed forest
草本型 Lawn 0.79 0.83 0.75
灌木型 Shrubbery 0.83 0.75
乔木型 Arboreal forest 0.79
[1] Andre HM, Ducarme X, Lebrun P (2002) Soil biodiversity: Myth, reality or conning. Oikos, 96, 3-24.
doi: 10.1034/j.1600-0706.2002.11216.x
[2] Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14, 224-228.
doi: 10.1016/S0169-5347(98)01583-3 pmid: 10354624
[3] Chen GX, Song DX (2000) A study on soil animal fauna from warm temperate zone in Xiaolongmen forest areas, Beijing. Chinese Biodiversity, 8, 88-94. (in Chinese with English abstract)
doi: 10.3321/j.issn:1005-0094.2000.01.012
[陈国孝, 宋大祥 (2000) 暖温带北京小龙门林区土壤动物的研究. 生物多样性, 8, 88-94.]
doi: 10.3321/j.issn:1005-0094.2000.01.012
[4] Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil system. Pedbiologia, 49, 479-497.
doi: 10.1002/chin.200705265
[5] Deca?ns T, Mariani L, Lavelle P (1999) Soil surface macrofaunal communities associated with earthworm casts in grasslands of the eastern plains of Colombia. Applied Soil Ecology, 13, 87-100.
doi: 10.1016/S0929-1393(99)00024-4
[6] Deca?ns T, Jimenéz JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. European Journal of Soil Biology, 42, 23-38.
doi: 10.1016/j.ejsobi.2005.09.001
[7] Fu BQ, Chen W, Dong XH, Xing ZM, Gao W (2002) The composition and structure of the four soil macrofaunas in Songshan Mountain in Beijing. Acta Ecologica Sinica, 22, 215-223. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2002.02.011
[傅必谦, 陈卫, 董晓晖, 邢忠民, 高武 (2002) 北京松山四种大型土壤动物群落组成和结构. 生态学报, 22, 215-223.]
doi: 10.3321/j.issn:1000-0933.2002.02.011
[8] Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: Large and small fragments support different arthropod assemblages. Biological Conservation, 106, 91-100.
doi: 10.1016/S0006-3207(01)00232-4
[9] Huang X, Wen WQ, Zhang J, Yang WQ, Liu Y, Yan BG, Huang YM (2010) Soil faunal diversity under typical alpine vegetation in West Sichuan. Chinese Journal of Ecology, 21, 181-190. (in Chinese with English abstract)
[黄旭, 文维全, 张健, 杨万勤, 刘洋, 闫帮国, 黄玉梅 (2010) 川西高山典型自然植被土壤动物多样性. 应用生态学报, 21, 181-190.]
[10] Jaccard (1912) The distribution of the flora of the alpine zone. New Phytologist, 11, 37-50.
doi: 10.1111/j.1469-8137.1912.tb05611.x
[11] Jin YL, Li BC, Geng L, Bu Y (2017) Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai. Biodiversity Science, 25, 304-311. (in Chinese with English abstract)
doi: 10.17520/biods.2016306
[靳亚丽, 李必成, 耿龙, 卜云 (2017) 上海大金山岛不同植被类型下土壤动物群落多样性. 生物多样性, 25, 304-311.]
doi: 10.17520/biods.2016306
[12] Li W, Cui LJ, Zhao XS, Zhang MY, Gao CJ, Zhang Y, Wang YF (2015) Community structure and diversity of soil animals in the Lake Taihu lakeshore wetland. Acta Ecologica Sinica, 35, 944-955. (in Chinese with English abstract)
doi: 10.5846/stxb201305020906
[李伟, 崔丽娟, 赵欣胜, 张曼胤, 高常军, 张岩, 王义飞 (2015) 太湖岸带湿地土壤动物群落结构与多样性. 生态学报, 35, 944-955.]
doi: 10.5846/stxb201305020906
[13] Lin YH, Yang DF, Zhang FD, Wang JX, Bai XL, Wang B (2006) Structure of soil anmial community of oakery litter and fluctuation during leaf litter decomposition. Forest Research, 19, 331-336. (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-1498.2006.03.013
[林英华, 杨德付, 张夫道, 王建修, 白秀兰, 王兵 (2006) 栎林凋落层土壤动物群落结构及其在凋落物分解中的变化. 林业科学研究, 19, 331-336.]
doi: 10.3321/j.issn:1001-1498.2006.03.013
[14] Lovei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41, 231-256.
doi: 10.1146/annurev.en.41.010196.001311
[15] López H, Oromí P (2010) A pitfall trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiology Notes, 2, 7-11.
doi: 10.5563/spbn.v2i0.19
[16] Mckinney ML (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161-176.
doi: 10.1007/s11252-007-0045-4
[17] Peng T, Ouyang ZY, Wen LZ, Zheng H (2006) Characters of soil arthropod community in Haidian District of Beijing. Chinese Journal of Ecology, 25, 389-394. (in Chinese with English abstract)
[彭涛, 欧阳志云, 文礼章, 郑华 (2006) 北京市海淀区土壤节肢动物群落特征. 生态学杂志, 25, 389-394.]
[18] Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39, 288-388.
doi: 10.2307/3544689
[19] Pielou EC (1985) Mathematical Ecology. Wiley-Interscience, New York.
[20] Powell JR, Craven D, Eisenhauer N (2014) Recent trends and future strategies in soil ecological research: Integrative approaches at Pedobiologia. Pedobiologia, 57, 1-3.
doi: 10.1016/j.pedobi.2014.01.001
[21] Rebele F (1994) Urban ecology and special features of urban ecosystems. Global Ecology and Biogeography Letters, 4, 173-187.
doi: 10.2307/2997649
[22] Rombke J, J?nsch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62, 249-265.
doi: 10.1016/j.ecoenv.2004.10.025 pmid: 15919116
[23] Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbanna.
doi: 10.1002/j.1538-7305.1948.tb00917.x
[24] Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
doi: 10.1038/163688a0
[25] Smith P, Bustamante M, House JI, Sobocka J, Harper R, Pan GX, West P, Clark J, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo MF, Elliott JA, Mcdowell R, Griffiths RI, Asakawa S, Bondeau A, Jain AK, Meersmans J (2015) Global change pressures on soils from land use and management. Global Change Biology, 22, 1008-1028.
doi: 10.1111/gcb.13068 pmid: 26301476
[26] Song YS, Li XW, Li F, Li HM (2015) Influence of different types of surface on the diversity of soil fauna in Beijing Olympic Park. Chinese Journal of Applied Ecology, 26, 1130-1136. (in Chinese with English abstract)
[宋英石, 李晓文, 李锋, 李海梅 (2015) 北京市奥林匹克公园不同地表类型对土壤动物多样性的影响. 应用生态学报, 26, 1130-1136.]
[27] Wall DH, Bardgett RD, Behan PV (2012) Soil Ecology and Ecosystem Services. Oxford University Press, Oxford.
[28] Wang Y, Wei W, Yang XZ, Chen LD, Yang L (2010) Interrelationships between soil fauna and soil environmental factors in China: Research advance. Chinese Journal of Applied Ecology, 21, 2441-2448. (in Chinese with English abstract)
[王移, 卫伟, 杨兴中, 陈利顶, 杨磊 (2010) 我国土壤动物与土壤环境要素相互关系研究进展. 应用生态学报, 21, 2441-2448.]
[29] Wu T, Ayres E, Bardgett RD (2011) Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences, USA, 108, 17720-17725.
doi: 10.1073/pnas.1103824108 pmid: 22006309
[30] Yin WY (1998) Pictorial Keys to Soil Animals of China. Science Press, Beijing. (in Chinese)
[尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.]
[31] Yin XQ (2001) Study on Forest Soil Animals in the Northeast of China. Northeast Normal University Press, Changchun. (in Chinese)
[殷秀琴 (2001) 东北森林土壤动物研究. 东北师范大学出版社, 长春.]
[32] Yuan F (2006) Taxonomy of Hexapoda, 2nd edn. China Agriculture Press, Beijing. (in Chinese)
[袁锋 (2006) 昆虫分类学(第二版). 中国农业出版社, 北京.]
[33] Zhang JE, Qin Z, Li QF (2011) Clustering and ordination of soil animal community under different land-use types. Chinese Journal of Ecology, 30, 2849-2856. (in Chinese with English abstract)
[章家恩, 秦钟, 李庆芳 (2011) 不同土地利用方式下土壤动物群落的聚类与排序. 生态学杂志, 30, 2849-2856.]
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[8] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[9] Jie-Li HE. Development of EST-SSR and Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[10] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[11] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[12] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China [J]. Biodiv Sci, 2019, 27(4): 439-448.
[13] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[14] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. Genetic diversity and population structure of Populus yunnanensis [J]. Biodiv Sci, 2019, 27(4): 355-365.
[15] Lou Minghua, Bai Chao, Hui Gangying, Tang Mengping. Comparison of distinguish ability on seven tree size diversity indices [J]. Biodiv Sci, 2019, 27(4): 449-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ma Qing-hu;Hou Lin-lin;Wu Xin;Tang Zhi-qiang and Song Yan-ru. The Relationship Between the Expansion of Cucumber Cotyledons and Cytokinin Biosynthesis[J]. Chin Bull Bot, 1993, 10(01): 43 -45 .
[2] ZHANG Li-Zhen, CAO Wei-Xing, ZHANG Si-Ping, ZHOU Zhi-Guo. CHARACTERIZING ROOT GROWTH AND SPATIAL DISTRIBUTION IN COTTON[J]. Chin J Plan Ecolo, 2005, 29(2): 266 -273 .
[3] Lirong Zhang,Xiahui Wang,Yilei Hou,Cuihua Li. Synergies between biodiversity conservation and poverty reduction in China[J]. Biodiv Sci, 2015, 23(2): 271 -277 .
[4] LI Zheng, HAN Lin, LIU Yu-Hong, AN Shu-Qing, and LENG Xin. C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China[J]. Chin J Plan Ecolo, 2012, 36(10): 1054 -1061 .
[5] Zhang Yan-min, Chen Xi-dian. A New Species of Carex from Shandong[J]. J Syst Evol, 1993, 31(4): 381 -382 .
[6] DING Ning, JIANG Yuan-Mao, WEI Shao-Chong, CHEN Qian, and GE Shun-Feng. Effects of fractionated nitrogen application on leaf senescence and 15 N-urea uptake and utilization of apple rootstock―Malus hupenhensis[J]. Chin J Plan Ecolo, 2012, 36(12): 1286 -1292 .
[7] ZHANG Bing-Chang, ZHAO Jian-Cheng, ZHANG Yuan-Ming, LI Min, ZHANG Jing. VERTICAL DISTRIBUTION OF ALGAE IN DIFFERENT LOCATIONS OF SAND DUNES IN THE GURBANTUNGGUT DESERT,XINJIANG, CHINA[J]. Chin J Plan Ecolo, 2008, 32(2): 456 -464 .
[8] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[9] Yong-Chang SONG, En-Rong YAN, Kun SONG. An update of the vegetation classification in China[J]. Chin J Plan Ecolo, 2017, 41(2): 269 -278 .
[10] Zheng-Hu ZHOU, Chuan-Kuan WANG. Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession[J]. Chin J Plan Ecolo, 2016, 40(12): 1257 -1266 .