Biodiversity Science ›› 1994, Vol. 02 ›› Issue (4): 210-212.doi: 10.17520/biods.1994034

• 论文 • Previous Article     Next Article

Studies on the reproductive biology of Taihangia rapestris: I Analysis on the habitat of T. repestris

ShenShihua, Lu Wenliang, Wang Fuhsiung   

  1. Institute of Botany,Academia Sinica,Beijing 100044
  • Received:1993-12-30 Revised:1994-03-02 Online:1994-11-20

Through the investigations on the geographical distribution of T. repestris, the habital factors of itsdistribution area,the results show that T. rupestris is strip--shaped distributed disjunctedly and sporadically inthe limestone regions of the eastern margin of Taihang mountain from 600 to 1500m in altitude, and it onlygrows in crevices of shadow slopes. where the climate is hot and rainy in the summer and dry and chilly inthe winter. There is a little soil in the crevices where T. rupestris grows. The soil is characterized by the lowwater-holding capacity, poor organic matter content and extremely high calcium concentration. The community of T. rupestris is composed of very limited number of species. Only 15 species which belonged tonine families and 11 genera were found in the three investigated qudrats. The floristic composition is verysimple and can be classified as typical dry shrubgrass vegetation type. Consequently, it is the special habitatthat may be the direct reason for the endangerment of T. rupestris.

Key words: topographic element s, natural resources, mountain, ecological benefits, biodiversity

[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[8] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[9] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[10] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[11] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China [J]. Biodiv Sci, 2019, 27(4): 439-448.
[12] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[13] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains [J]. Biodiv Sci, 2019, 27(2): 177-185.
[14] CAO Deng-Chao, GAO Xiao-Peng, LI Lei, GUI Dong-Wei, ZENG Fan-Jiang, KUANG Wen-Nong, YIN Ming-Yuan, LI Yan-Yan, Aili PULATI. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China [J]. Chin J Plant Ecol, 2019, 43(2): 165-173.
[15] Qian Haiyuan,Yu Jianping,Shen Xiaoli,Ding Ping,Li Sheng. Diversity and composition of birds in the Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 76-80.
Full text



[1] Giovanna Serino, and Qi Xie. The Ever Expanding Role of Ubiquitin and SUMO in Plant Biology[J]. J Integr Plant Biol, 2013, 55(1): 5 -6 .
[2] Monica Boscaiu, Cristina Lull, Josep Llinares, Oscar Vicente, Herminio Boira. Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species[J]. J Plant Ecol, 2013, 6(2): 177 -186 .
[3] SHEN Ze-Hao, FANG Jing-Yun. Niche Comparison of two Fagus Species Based on the Topographic Patterns of Their Populations[J]. Chin J Plan Ecolo, 2001, 25(4): 392 -398 .
[4] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. Tree of life for the genera of Chinese vascular plants[J]. J Syst Evol, 2016, 54(4): 277 -306 .
[5] LI Jun, WANG Xue-Chun, SHAO Ming-An, ZHAO Yu-Juan, LI Xiao-Fang. Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau[J]. Chin J Plan Ecolo, 2010, 34(3): 330 -339 .
[6] Yihao Shi, Jiaying Huang, Tianshu Sun, Xuefei Wang, Chenqi Zhu, Yuxi Ai and Hongya Gu. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana[J]. J Integr Plant Biol, 2017, 59(2): 118 -133 .
[7] Xiayan Liu, Mengdi Zheng, Rui Wang, Ruijuan Wang, Lijun An, Steve R. Rodermel, and Fei Yu. Genetic Interactions Reveal that Specific Defects of Chloroplast Translation are Associated with the Suppression of var2-Mediated Leaf Variegation[J]. J Integr Plant Biol, 2013, 55(10): 979 -993 .
[8] ZHOU Zhong-Ze, ZHAO Zuo-Cheng, WANG Xu-Ying, XU Ren-Xin, LI Yu-Cheng. Pollen morphology, tepal and fruit microcharacteristics of the genus Fagopyrum Mill. from China[J]. J Syst Evol, 2003, 41(1): 63 -78 .
[9] Yao Zhao,Jiakuan Chen. The origin of crops in the Yangtze River Basin and its relevance for biodiversity[J]. Biodiv Sci, 2018, 26(4): 333 -345 .
[10] Zhang Jingwei. Mallee——A Special Vegetation Type in Australia[J]. Chin J Plan Ecolo, 1983, 7(3): 256 -259 .