Biodiversity Science ›› 2006, Vol. 14 ›› Issue (4): 345-351.doi: 10.1360/biodiv.060003

• Editorial • Previous Article     Next Article

PCR-RFLP analysis of bacterial 16S rDNA from a typical garden soil in Taihu region

Qihui Teng1, Hui Cao1*, Zhongli Cui1, 2, Ying Wang1, Bo Sun2, Hongtao Hao2, Shunpeng Li1   

  1. 1 Key Laboratory of Microbiological Engineering of Agricultural Environment, MOA, Nanjing Agricultural University, Nanjing 210095
    2 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
  • Received:2006-01-04 Revised:2006-05-25 Online:2006-07-20
  • Hui Cao

Soil microbial diversity provides basic function of a soil ecosystem. In this study, the total DNA of microorganisms was extracted by an indirect method from a typical garden soil of Taihu region, Jiangsu Province. The 16S rDNAs of the extracted DNA were amplified using bacterial universal primers 27F and 1492R. PCR products were ligated into the pMD 18-T Vector and transformed into Escherichia coli DH5α to construct a 16S rDNA clone library of the soil microbes. A total of 173 clones from the library were screened and their 16S rDNA fragments were reamplified. The PCR products were digested by Rsa I and Hha I, re-spectively, and their fingerprints were analyzed. The results indicated that the library includes 63 Hha I and Rsa I restriction endonuclease types and the coverage (C value) of the clone library is 76.30%. The number of genotypes digested either by Hha I or Rsa I is only 40 and 27 although it has a high coverage. There were two main restriction types accounting for 16% and 12% of the total 16S rDNA clones, respectively. Phy-logenetic analysis suggests that the dominant bacteria in this garden soil belong to α-proteobacteria and γ-proteobacteria.

Key words: Three Gorges Project, biodiversity, nature reserve, artificial breeding and stocking, ecological and environmental monitoring network

[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[4] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[5] Wang Yuan, Li Sheng, Liu Wulin, Zhu Xuelin, Li Bingzhang. Coat pattern variation and activity rhythm of Asiatic golden cat (Catopuma temminckii) in Yarlung Zangbo Grand Canyon National Nature Reserve of Tibet, China [J]. Biodiv Sci, 2019, 27(6): 638-647.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[8] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[9] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[10] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[11] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[12] Xiao Zhishu,Chen Lijun,Song Xiangjin,Shu Zufei,Xiao Ronggao,Huang Xiaoqun. Species inventory and assessment of large- and medium-size mammals and pheasants using camera trapping in the Chebaling National Nature Reserve, Guangdong Province [J]. Biodiv Sci, 2019, 27(3): 237-242.
[13] Chen Lijun,Shu Zufei,Xiao Zhishu. Application of camera-trapping data to study daily activity patterns of Galliformes in Guangdong Chebaling National Nature Reserve [J]. Biodiv Sci, 2019, 27(3): 266-272.
[14] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[15] Chen Qiangqiang, Li Meiling, Wang Xu, Mueen Qamer Faisal, Wang Peng, Yang Jianwei, Wang Muyang, Yang Weikang. Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China [J]. Biodiv Sci, 2019, 27(2): 186-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wei Zhou,Xu Li,Kaiyuan Li,Minghui Li. Fish faunal presence value in three first level tributaries of the Salween River in Yunnan, China and its meaning for aquatic nature reserve plan- ning[J]. Biodiv Sci, 2016, 24(10): 1146 -1153 .
[2] Brett J. Ferguson, Arief Indrasumunar, Satomi Hayashi, Meng-Han Lin, Yu-Hsiang Lin, Dugald E. Reid and Peter M. Gresshoff. Molecular Analysis of Legume Nodule Development and Autoregulation[J]. J Integr Plant Biol, 2010, 52(1): 61 -76 .
[3] CHEN Jin, LI Yang, HUANG Jian-Hui. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe[J]. Chin J Plan Ecolo, 2011, 35(1): 9 -16 .
[4] . [J]. Plant Diversity, 2002, 24(05): 1 -3 .
[5] Yang Yung-Chang. Some new species of the genus Carex from Qinghai[J]. J Syst Evol, 1980, 18(3): 362 -365 .
[6] Taylor E. Shaw. Species diversity in restoration plantings: Important factors for increasing the diversity of threatened tree species in the restoration of the Araucaria forest ecosystem[J]. Plant Diversity, 2019, 41(02): 84 -93 .
[7] . [J]. Chin J Plan Ecolo, 1964, (2): 265 .
[8] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[9] Li Shuzhong. Brief iutroduction on the success of captvie breeding of rare birds in the Beijing Zoo[J]. Biodiv Sci, 1994, 02(3): 181 -183 .
[10] Quanying Du, Zhi Li, Shurun Liu, Hongyan Liu. Dynamics of species diversity and characteristics of halophytic plant communities around saline lakes in arid and semi-arid regions of Inner Mongolia[J]. Biodiv Sci, 2007, 15(3): 271 -281 .