生物多样性 ›› 2014, Vol. 22 ›› Issue (5): 640-648.doi: 10.3724/SP.J.1003.2014.13240

所属专题: 海洋生物多样性

• • 上一篇    下一篇

珊瑚藻类对南麂列岛潮间带底栖生物群落多样性的影响

汤雁滨1, 廖一波1, 寿鹿1, 曾江宁1, *(), 高爱根1, 陈全震1, 孙庆海2   

  1. 1 国家海洋局海洋生态系统与生物地球化学重点实验室, 国家海洋局第二海洋研究所, 杭州 310012
    2 温州海虎海藻养殖有限公司, 浙江温州 325401
  • 收稿日期:2013-11-12 接受日期:2014-07-15 出版日期:2014-09-20
  • 通讯作者: 曾江宁 E-mail:jiangningz@126.com
  • 基金项目:
    国家“973”项目(2010CB428903);海洋公益性行业科研专项(201305009, 201305043-3, 200905011-2);浙江省海洋环保项目“温州海域大型海藻专项调查与藻类资源恢复示范”(WZHX201210116)

Influence of coralline algae on biodiversity of macrobenthic community in intertidal zone of Nanji Islands

Yanbin Tang1, Yibo Liao1, Lu Shou1, Jiangning Zeng1, *(), Aigen Gao1, Quanzhen Chen1, Qinghai Sun2   

  1. 1 Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012
    2 Wenzhou Seatiger Seaweed Cultivation Co., Ltd., Wenzhou, Zhejiang 325401
  • Received:2013-11-12 Accepted:2014-07-15 Online:2014-09-20
  • Contact: Zeng Jiangning E-mail:jiangningz@126.com

为了解南麂列岛潮间带珊瑚藻类对于其他大型藻类和底栖动物的影响, 在南麂列岛国家级海洋自然保护区布设了4条潮间带断面, 于2012年5月至2013年2月对其生物状况进行了逐季调查, 分别分析了中低潮区大型藻类、非珊瑚藻大型藻类、底栖动物的物种多样性和均匀度, 并计算了大型底栖动物的功能多样性指数Rao's Q。主要结果如下: (1)共采集和鉴定出大型藻类52种, 其中珊瑚藻科藻类有5种; (2)珊瑚藻类在高潮区没有分布, 在中低潮区均占据优势, 占潮间带藻类生物量的68.9%。四季中低潮区大型藻类的Shannon-Wiener多样性指数范围为1.638-4.044, 非珊瑚藻大型藻类的多样性指数范围为1.495-3.809, 底栖动物为5.289-6.917; 大型藻类的Pielou均匀度指数范围为0.819-0.971, 非珊瑚藻大型藻类的均匀度指数范围为0.830-0.973, 底栖动物为0.967-0.988; (3)大型藻类物种多样性和均匀度指数的降低与珊瑚藻类优势度的增加相关, 但珊瑚藻类优势度与底栖动物物种多样性指数、均匀度指数和功能多样性指数均没有显著相关性; (4)底栖动物功能多样性与珊瑚藻类优势度均呈低潮区高于中潮区的变化规律, 但相关性分析表明两者间并无直接联系。推测珊瑚藻类通过竞争占据了其他藻类的生存空间, 从而降低了南麂列岛潮间带大型藻类的物种多样性和均匀度。底栖动物则因其自身生活特点而使得珊瑚藻类的扩张未能影响其多样性水平。

关键词: 大型藻类, 底栖动物, 物种多样性, 功能多样性

With an aim of describing the influence of coralline algae on other macroalgae and benthic invertebrates in the intertidal zone of the Nanji Islands, an investigation of such organism assemblages was conducted in the Nanji Archipelago Marine Nature Reserve between May 2012 and February 2013. Shannon-Wiener index and Pielou's evenness indices were calculated for macroalgae (including coralline algae), non-Corallinaceae macroalgae (excluding coralline algae) and benthic invertebrates. In addition, the functional diversity of the benthic community was estimated using Rao's Q. Our results are as follows: (1) A total of 52 species of macroalgae belonging to 3 phyla, 3 classes, 16 orders, 21 families and 41 genera were found; 5 species among them belonged to coralline algae; (2) The dominance of coralline algae has reached a high level in the intertidal zone of the Nanji Islands except in the high tidal zone where relatively few macroalgae exist. The biomass of coralline alga accounted for 68.9% of the total algae biomass. Shannon-Wiener indices of macroalgae diversity varied from 1.638-4.044, and non-Corallinaceae macroalgae varied from 1.495- 3.809, while benthic invertebrates’ varied from 5.2890-6.917. Pielou’s evenness of macroalgae communities varied from 0.819-0.971, and non-Corallinaceae macroalgae varied from 0.930-0.973; benthic invertebrates ranged from 0.967 to 0.988; (3) Regression analyses between dominance of coralline algae and Shannon-Wiener and Pielou's evenness indices of macroalgae communities suggested that coralline algae may be reducing the species diversity of macroalgae. The result of correlation analysis between dominance of coralline algae and Shannon-Wiener index, Pielou's evenness of benthic invertebrates showed no significant correlation. (4) The dominance of coralline algae and Rao's Q of benthic invertebrates in low tidal zone were both higher than those in middle tidal zone, but the correlation analysis showed no significant correlation between them. Based on our results, we concluded that: well-adapted coralline algae species may have reduced the species diversity of other macroalgae in these systems via interspecific competition; meanwhile, the benthic invertebrates, perhaps because of their higher dispersal abilities and more diverse life histories relative to macroalgae, were not affected in terms of species or functional diversity by coralline algae.

Key words: macroalgae, benthic invertebrates, species diversity, functional diversity

图1

南麂列岛潮间带底栖生物研究区域与采样断面"

表1

底栖动物功能多样性评估的功能特征"

功能特征
Functional trait
划分方式
Units
食性
Diet habit
肉食性、植食性、杂食性
Carnivorous, herbivory, omnivory
摄食方式
Feeding type
滤食、啮食、吞食
Filter feeder, grazer, swallow feeder
群居性
Gregariousness
以指数1-3分别代表独居、偶尔构成群体和总是构成群体
Indices from 1-3, representing singleton, paired to sometimes forming small schools, always schools, respectively
迁移能力
Migration capability
以指数1-3分别代表迁移能力的弱、中、强
Indices from 1-3, representing migration capability characterised by low, medium, high, respectively

表2

南麂列岛潮间带珊瑚藻类的优势度"

季节
Season
潮区
Tidal zone
珊瑚藻类优势度
Dominance
春季
Spring
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.259
低潮区 Low tidal zone 0.346
夏季
Summer
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.585
低潮区 Low tidal zone 0.644
秋季
Autumn
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.597
低潮区 Low tidal zone 0.588
冬季
Winter
高潮区 High tidal zone -
中潮区 Middle tidal zone 0.364
低潮区 Low tidal zone 0.975

表3

南麂列岛潮间带大型海藻群落的物种多样性指数和均匀度指数"

季节
Season
潮区
Tidal zone
物种多样性指数 Shannon-Wiener index 物种均匀度指数 Pielou’s evenness index
所有大型藻类
All macroalgae
非珊瑚藻大型藻类
Non-Corallinaceae macroalgae
所有大型藻类
All macroalgae
非珊瑚藻大型藻类
Non-Corallinaceae macroalgae
春季
Spring
中潮区 Middle tidal zone 3.793 3.601 0.971 0.973
低潮区 Low tidal zone 4.044 3.809 0.952 0.952
夏季
Summer
中潮区 Middle tidal zone 3.147 2.422 0.910 0.863
低潮区 Low tidal zone 2.987 2.489 0.942 0.963
秋季
Autumn
中潮区 Middle tidal zone 3.251 3.151 0.879 0.949
低潮区 Low tidal zone 2.590 1.925 0.863 0.830
冬季
Winter
中潮区 Middle tidal zone 3.335 3.216 0.930 0.930
低潮区 Low tidal zone 1.638 1.495 0.819 0.944

表4

南麂列岛潮间带底栖动物的物种多样性指数和均匀度指数"

季节 Season 潮区 Tidal zone 物种多样性指数
Shannon-Wiener index
物种均匀度指数
Pielou’s evenness index
春季 Spring 中潮区 Middle tidal zone 5.931 0.978
低潮区 Low tidal zone 6.917 0.988
夏季 Summer 中潮区 Middle tidal zone 6.212 0.967
低潮区 Low tidal zone 6.738 0.988
秋季 Autumn 中潮区 Middle tidal zone 6.336 0.981
低潮区 Low tidal zone 6.050 0.977
冬季 Winter 中潮区 Middle tidal zone 5.882 0.973
低潮区 Low tidal zone 5.289 0.987

图2

珊瑚藻类优势度与大型海藻物种多样性指数的相关性分析: (A)与包含珊瑚藻类的大型藻类; (B)与非珊瑚藻大型藻类。"

图3

珊瑚藻类优势度与其他大型藻类物种均匀度指数的相关性分析"

表5

南麂列岛潮间带底栖动物的功能特征值"

编号
No.

Species
食性
Diet habit
摄食方式
Feeding type
群居性
Gregariousness
迁移能力
Migration capability
1 异须沙蚕 Nereis heterocirrata 杂食性 Omnivory 吞食 Swallow feeder 1 3
2 马旋鳃虫 Spirobranchus maldivensis 杂食性 Omnivory 滤食 Filter feeder 3 3
3 红条毛肤石鳖 Acanthochiton rubrolineatus 植食性 Herbivory 啮食 Grazer 2 2
4 嫁虫戚 Cellana toreuma 植食性 Herbivory 啮食 Grazer 2 2
5 肋虫昌螺 Umbonium costatum 植食性 Herbivory 啮食 Grazer 3 2
6 短滨螺 Littorina balteata 植食性 Herbivory 啮食 Grazer 2 2
7 小结节滨螺 Nodilittorina exigua 植食性 Herbivory 啮食 Grazer 2 2
8 疣荔枝螺 Thais clavigera 肉食性 Carnivorous 啮食 Grazer 2 3
9 覆瓦小蛇螺 Serpulorbis imbricata 杂食性 Omnivory 滤食 Filter feeder 1 1
10 栗色拉沙蛤 Lasaea nipponica 杂食性 Omnivory 滤食 Filter feeder 3 1
11 短石蛏 Lithophaga curta 杂食性 Omnivory 滤食 Filter feeder 2 1
12 带偏顶蛤 Modiolus comptus 杂食性 Omnivory 滤食 Filter feeder 3 1
13 条纹隔贻贝 Septifer virgatus 杂食性 Omnivory 滤食 Filter feeder 3 1
14 中华小藤壶 Chthamalus sinensis 杂食性 Omnivory 滤食 Filter feeder 3 1
15 白条地藤壶 Euraphia withersi 杂食性 Omnivory 滤食 Filter feeder 3 1
16 鳞笠藤壶 Tetraclita squamosa squamosa 杂食性 Omnivory 滤食 Filter feeder 3 1
17 日本笠藤壶 Tetraclita japonica 杂食性 Omnivory 滤食 Filter feeder 3 1
18 纹藤壶 Amphibalanus amphitrite 杂食性 Omnivory 滤食 Filter feeder 3 1
19 白脊藤壶 Fistulobalanus albicostatus 杂食性 Omnivory 滤食 Filter feeder 3 1
20 钩虾亚目未定种 Gammaridea 杂食性 Omnivory 啮食 Grazer 3 3
21 藻钩虾属未定种 Amphithoe sp. 植食性 Herbivory 啮食 Grazer 3 3
22 腔齿海底水虱 Dynoides dentisinus 植食性 Herbivory 啮食 Grazer 2 3
23 光辉圆扇蟹 Sphaerozius nitidus 肉食性 Carnivorous 啮食 Grazer 1 3

表6

南麂列岛潮间带底栖动物的功能多样性指数"

季节
Season
潮区
Tidal zone
功能多样性指数
Rao's Q
春季
Spring
中潮区 Middle tidal zone 0.139
低潮区 Low tidal zone 0.345
夏季
Summer
中潮区 Middle tidal zone 0.059
低潮区 Low tidal zone 0.135
秋季
Autumn
中潮区 Middle tidal zone 0.175
低潮区 Low tidal zone 0.239
冬季
Winter
中潮区 Middle tidal zone 0.176
低潮区 Low tidal zone 0.313

附表1

南麂列岛潮间带大型藻类名录及优势度"

编号
No.
物种
Species
优势度 Dominance
高潮带 High tidal zone 中潮带 Middle tidal zone 低潮带 Low tidal zone
春季
Spring
夏季
Summer
秋季
Autumn
冬季
Winter
春季
Spring
夏季
Summer
秋季
Autumn
冬季
Winter
春季
Spring
夏季
Summer
秋季
Autumn
冬季
Winter
红藻门 Rhodophyta
1 坛紫菜
Porphyra haitanensis
0.500 0.464 0.001 0.010
2 小石花菜
Gelidium divaricatum
0.266 0.249 0.029 0.004 0.062
3 匍匐石花菜
Gelidium pusillum
0.005
4 密集石花菜
Gelidium yamadae
5 海萝
Gloiopeltis furcata
6 蜈蚣藻
Grateloupia filicina
0.004
7 舌状蜈蚣藻
Grateloupia livida
0.001
8 长枝蜈蚣藻
Grateloupia prolongata
9 贴生美叶藻
Callophyllis adnata
0.001
10 珊瑚藻
Corallina officinalis
0.083 0.502 0.424 0.188 0.239 0.578 0.026 0.633
11 小珊瑚藻
Corallina pilulifera
0.010
12 叉节藻
Amphiroa ephedraea
13 宽角叉珊藻
Jania adhaerens
0.019 0.001 0.011 0.090
14 粗珊藻
Calliarthron yessoense
0.176 0.054 0.173 0.176 0.106 0.055 0.472 0.342
15 中间软刺藻
Chondracanthus intermedius
0.012 0.039 0.002 0.004
16 角叉菜
Chondrus ocellatus
17 裸干沙菜
Hypnea chordacea
18 密毛沙菜
Hypnea boergesenii
19 环节藻
Champia parvula
0.001
20 节荚藻
Lomentaria hakodatensis
21 凝菜
Campylaephora crassa
22 日本仙菜
Ceramium japonicum
23 波登仙菜
Ceramium boydenii
24 顶群藻
Acrosorium yendoi
25 橡叶藻
Phycodrys radicosa
26 粗枝软骨藻
Chondria crassicaulis
27 细枝软骨藻
Chondria tenuissima
28 羽枝凹顶藻
Laurencia pinnata
0.031 0.013
29 多管藻
Polysiphonia senticulosa
30 小鸭毛藻
Symphyocladia pumila
褐藻门 Phaeophyta
31 水云
Ectocarpus arctus
0.015
32 印度褐茸藻
Hincksia indica
0.004
33 宽叶网翼藻
Dictyopteris latiuscula
0.037 0.001
34 网地藻
Dictyota dichotoma
0.012
35 厚缘藻
Dilophus okamurae
0.002 0.006
36 厚网藻
Pachydictyon coriaceum
37 铁钉菜
Ishige okamurae
0.001 0.041 0.025
38 囊藻
Colpomenia sinuosa
0.001
39 鹅肠菜
Petalonia binghamiae
0.021 0.002
40 萱藻
Scytosiphon lomentaria
41 无节萱藻
Scytosiphon dotyi
0.005 0.009
42 昆布
Ecklonia kurome
0.001
43 羊栖菜
Hizikia fusiforme
0.003 0.083
44 瓦氏马尾藻
Sargassum vachellianum
0.001
45 鼠尾藻
Sargassum thunbergii
0.272 0.137 0.060 0.247 0.152 0.113 0.042 0.007
绿藻门 Chlorophyta
46 盘苔
Blidingia minima
47 浒苔
Enteromorpha prolifera
0.001
48 石莼
Ulva lactuca
0.002 0.004
49 蛎菜
Ulva conglobata
0.006 0.010 0.004
50 硬毛藻
Chaetomorpha antennina
51 细丝刚毛藻
Cladophora sericea
0.006
52 羽状羽藻
Bryopsis pennata
[1] .Branch GM, Branch ML (1981) Experimental analysis of intraspecific competition in an intertidal gastropod, Littorina unifasciata. Australian Journal of Marine and Freshwater Research, 32, 573-589.
[2] .Cai RX (蔡如星) (1995) Biology of Cirripedia. Bulletin of Biology(生物学通报), 30, 24-25. (in Chinese)
[3] .Chen GT (陈国通), Yang XL (杨晓兰), Yang JY (杨俊毅), Gao AG (高爱根) (1994) Ecological and environment qualitative study in the intertidal zone and land area of Nanji Archipelago. Donghai Marine Science(东海海洋), 12, 1-15. (in Chinese with English abstract)
[4] .Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143.
[5] .Eleftheriou A, McIntyre A (2005) Methods for the Study of Marine Benthos, 3rd edn. Blackwell Publishing, Oxford.
[6] .Gao AG (高爱根), Chen GT (陈国通), Yang JY (杨俊毅), You ZJ (尤仲杰) (1994) Ecological study on mollusca of the intertidal zone in Nanji Marine Nature Reserve. Donghai Marine Science(东海海洋), 12, 44-61. (in Chinese with English abstract)
[7] .Gao AG (高爱根), Zeng JN (曾江宁), Chen QZ (陈全震), Hu XG (胡锡钢), Yang JY (杨俊毅), Liao YB (廖一波), Shou L (寿鹿), Xu XQ (徐晓群), Liu JJ (刘晶晶), Jiang ZB (江志兵), Dong YT (董永庭), Hu YM (胡月妹) (2007) Time and space distribution of molluscas of intertidal zone in Nanji Archipelago Marine Nature Reserve. Acta Oceanologica Sinica(海洋学报), 29, 105-111. (in Chinese with English abstract)
[8] .Gao KS (高坤山) (1999) On the calcification of coralline algae. Oceanologia et Limnologia Sinica(海洋与湖沼), 30, 290-294. (in Chinese with English abstract)
[9] .Hans J, Jöst C, Zauke GP (2011) Significance and interspecific variability of accumulated trace metal concentrations in Antarctic benthic polychaetes. Science of the Total Environment, 409, 2845-2851.
[10] .Hayakawa J, Kawamura T, Ohashi S, Horii T, Watanabe Y (2008) Habitat selection of Japanese top shell (Turbo cornutus) on articulated coralline algae combination of preferences in settlement and post-settlement stage. Journal of Experimental Marine Biology and Ecology, 363, 118-123.
[11] .Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to gazing. Journal of Experimental Marine Biology and Ecology, 434/435, 94-101.
[12] .Kelaher BP, Underwood AJ, Chapman MG (2003) Experimental transplantations of coralline algal turf to demonstrate causes of differences in macrofauna at different tidal heights. Journal of Experimental Marine Biology and Ecology, 282, 23-41.
[13] .Kelaher BP, Castilla JC (2005) Habitat characteristics influence macrofaunal communities in coralline turf more than mesoscale coastal upwelling on the coast of northern Chile. Estuarine, Coastal and Shelf Science, 63, 155-165.
[14] .Lei XM (雷新明), Huang H (黄晖), Huang LM (黄良民) (2012) Current state of ecological functions of coralline algae in coral reef ecosystem. Ecological Science(生态科学), 31, 585-590. (in Chinese with English abstract)
[15] .Levins R (1968) Evolution in Changing Environments. Princeton University Press, Princeton.
[16] .Liu RY (刘瑞玉) (2008) Checklist of Marine Biota of China Seas (中国海洋生物名录). Science Press, Beijing. (in Chinese)
[17] .Liu RY (刘瑞玉), Ren XQ (任先秋) (2007) Fauna Sinica, Invertebrata, Vol. 42, Crustacea, Cirripedia, Thoracica (中国动物志无脊椎动物第四十二卷: 甲壳动物亚门蔓足下纲围胸总目). Science Press, Beijing. (in Chinese)
[18] .Ma KP (马克平), Liu YM (刘玉明) (1994) Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity(生物多样性), 2, 231-239. (in Chinese)
[19] .Olsgard F, Somerfield PJ, Carr MR (1997) Relationship between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient. Marine Ecology Progress Series, 149, 173-181.
[20] .Peng X (彭欣), Xie QL (谢起浪), Chen SB (陈少波), Huang XL (黄晓林), Qiu JB (仇建标), Zhong W (仲伟), Chen WD (陈万东) (2009) Distribution of intertidal benthos and the human impact in Nanji Islands, China. Oceanologia et Limnologia Sinica(海洋与湖沼), 40, 584-589. (in Chinese with English abstract)
[21] .Pielou EC (translated by Lu ZY (卢泽愚)) (1969) Introduction to Mathematical Ecology (数学生态学引论). Science Press, Beijing. (in Chinese)
[22] .Raffaelli D (1979) The grazer-algae interaction in the intertidal zone on New Zealand rocky shores. Journal of Experimental Marine Biology and Ecology, 38, 81-100.
[23] .Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24-43.
[24] .Ren XQ (任先秋) (2006) Fauna Sinica, Invertebrata, Vol. 41, Crustacea, Amphipoda, Gammaridea (I) (中国动物志无脊椎动物第四十一卷: 甲壳动物亚门端足目钩虾亚目(一)). Science Press, Beijing. (in Chinese)
[25] .Shen GY (沈国英), Shi BZ (施并章) (2002) Marine Ecology (海洋生态学). Science Press, Beijing. (in Chinese)
[26] .Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annual Review of Ecology, Evolution and Systematics, 17, 273-303.
[27] .Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy E, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininomonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501, 539-542.
[28] .Sun JZ, Ning XR, Le FF, Chen WD, Zhuang DG (2010) Long term changes of biodiversity of benthic macroalgae in the intertidal zone of the Nanji Islands. Acta Ecologica Sinica, 30, 106-112.
[29] .Wang ZR (王祯瑞) (1997) Fauna Sinica, Phylum Mollusca, Order Mytiloida (中国动物志: 软体动物门双壳纲贻贝目). Science Press, Beijing. (in Chinese)
[30] .Whittington-Jones KJ (1997) Ecological Interactions on A Rocky Shore: The Control of Macroalgal Distribution by Intertidal Grazers. Masters thesis. Science of Rhodes University, South Africa.
[31] .Xia BM (夏邦美), Wang YQ (王永强), Zhou JH (周锦华), Zhang DR (张德瑞) (2013) Flora Algarum Marinarum Sinicarum, Tomus, II, Rhodophyta, No. IV, Corallineales (中国海藻志第二卷: 红藻门, 第四册珊瑚藻目). Science Press, Beijing. (in Chinese)
[32] .Xu ZG (徐智广), Li MZ (李美真), Huo CL (霍传林), Yu DD (于道德), Zhang ZD (张振东), Shao YQ (邵雁群) (2012) Effects of CO2-induced seawater acidification on photosynthesis and calcification in the coralline alga Corallina pilulifera. Acta Ecologica Sinica(生态学报), 32, 699-705. (in Chinese with English abstract)
[33] .Xu ZM (徐芝敏), Jiang JL (蒋加伦), Sun JZ (孙建璋) (1994) Study on ecology and resources of marine algae in the intertidal zone, Nanji Archipelago. Donghai Marine Science(东海海洋), 12, 29-43. (in Chinese with English abstract)
[34] .You ZJ (尤仲杰), Chen ZY (陈志云) (2010) Systematic taxonomy of Thais (Gastropoda: Muricidae) along Zhejiang Coast. Journal of Zhejiang Ocean University (Natural Science) (浙江海洋学院学报(自然科学版)), 29, 306-317. (in Chinese with English abstract)
[35] .Zheng XQ (郑新庆), Huang LF (黄凌风), Li YC (李元超), Lin RC (林荣澄) (2013) The feeding selectivity of an herbivorous amphipod Ampithoe valida on three dominant macroalgal species of Yundang Lagoon. Acta Ecologica Sinica(生态学报), 33, 7166-7172. (in Chinese with English abstract)
[36] .Zoltán BD (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533-540.
[1] 刘丹,郭忠玲,崔晓阳,范春楠. (2020) 5种东北红豆杉植物群丛及其物种多样性的比较. 生物多样性, 28(3): 340-349.
[2] 刘振元,孟星亮,李正飞,张君倩,徐靖,银森录,谢志才. (2020) 南洞庭湖区软体动物物种多样性评估及保护对策. 生物多样性, 28(2): 155-165.
[3] 刘旻霞,李全弟,蒋晓轩,夏素娟,南笑宁,张娅娅,李博文. (2020) 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献. 生物多样性, 28(2): 107-116.
[4] 李霞,朱万泽,孙守琴,舒树淼,盛哲良,张军,刘亭,张志才. (2020) 大渡河中游干暖河谷区生境对植物群落分布格局和多样性的影响. 生物多样性, 28(2): 117-127.
[5] 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. (2020) 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 44(1): 33-43.
[6] 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. (2020) 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 44(1): 22-32.
[7] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[8] 谭一波,申文辉,付孜,郑威,欧芷阳,谭长强,彭玉华,庞世龙,何琴飞,黄小荣,何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[9] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[10] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[11] 陈自宏,王元兵,代永东,陈凯,徐玲,何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[12] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. (2019) 大小兴安岭针叶树倒木上木腐真菌的物种多样性. 生物多样性, 27(8): 887-895.
[13] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[14] 李俊凝, 李通, 魏玉莲. (2019) 丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系. 生物多样性, 27(8): 880-886.
[15] 焦萌, 李晶, 赵慧峰, 武春生, 张爱兵. (2019) 基于在线数据库的鳞翅目刺蛾科昆虫物种多样性及其全球分布格局. 生物多样性, 27(7): 778-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed