生物多样性 ›› 2019, Vol. 27 ›› Issue (7): 772-777.doi: 10.17520/biods.2019067

• 研究报告 • 上一篇    下一篇

展毛翠雀的花性状表型选择

路宁娜1, 2, *(), 刘振恒3, 马妍2, 路广梅2, 孟秀祥1, *()   

  1. 1 中国人民大学环境学院, 北京 100872
    2 西北师范大学生命科学学院, 兰州 730000
    3 甘南州玛曲县草原站, 甘肃玛曲 747300
  • 收稿日期:2019-03-08 接受日期:2019-06-20 出版日期:2019-07-20
  • 通讯作者: 路宁娜,孟秀祥 E-mail:moonlnn@126.com;meng2014@ruc.edu.cn
  • 基金项目:
    甘肃省重点研发计划(18YF1FA053);国家自然科学基金(31660110)

Phenotypic selection analysis of flower traits in Delphinium kamaonense var. glabrescens (Ranunculaceae)

Lu Ningna1, 2, *(), Liu Zhenheng3, Ma Yan2, Lu Guangmei2, Meng Xiuxiang1, *()   

  1. 1 School of Environment & Natural Resources, Renmin University of China, Beijing 100872
    2 School of Life Sciences, Northwest Normal University, Lanzhou 730000
    3 Grassland Station, Maqu, Gannan Prefecture, Gansu 747300
  • Received:2019-03-08 Accepted:2019-06-20 Online:2019-07-20
  • Contact: Lu Ningna,Meng Xiuxiang E-mail:moonlnn@126.com;meng2014@ruc.edu.cn

传粉者的选择作用是花表型性状进化的重要驱动力, 解析选择作用的强度是理解花进化的关键。通过表型操控实验和表型选择研究能够分析花性状与其适合度的关系, 探究花性状的表型选择作用。为揭示花性状变化对雌性适合度的影响, 本研究处理展毛翠雀(Delphinium kamaonense var. glabrescens)花萼片大小, 并进行表型选择分析。结果表明: 人为减小展毛翠雀花萼片显著降低了传粉者的访花频率, 但是并没有影响种子产量(种子数和结籽率), 说明展毛翠雀花萼片的大小不影响种子产量, 可能主要吸引传粉昆虫输出花粉。通过雌性适合度(种子数量)估计表型选择梯度, 发现花萼片大小(长和宽)没有受到显著的直接选择梯度。但是, 花距长受到显著的线性选差和选择梯度, 表明花距的延长能够增加种子产量。本研究表明展毛翠雀花性状受到选择的作用, 但萼片和花距有不同的功能, 分别影响传粉者访问频率和种子产量。

关键词: 展毛翠雀, 花大小, 表型选择, 表型进化, 性状操控, 适合度

It has been widely accepted that pollinator-mediated selection is responsible for the evolution of flower traits. To date, two distinct methods of phenotypic manipulation and phenotypic selection analyses have been used to demonstrate flower function and potential selection. However, empirical studies combining both methods are rare in wild plants. Through manipulating sepal size of Delphinium kamaonense var. glabrescens (Ranunculaceae) and performing phenotypic selection analysis, this study examined functions of two flower traits and the potential selection on them. Sepals manipulated to be smaller significantly decreased visitation rate of pollinators, but did not affect seed number per flower or seed set. Sepal size mainly affected pollen export mediated by pollinator attraction rather seed production. Phenotypic selection estimated through female fitness showed no significant gradient with varying sepal width and length. However, significant linear selection differential and selection gradient on the spur length were observed, showing higher seed production in individuals with longer floral spurs. This study suggests different function and potential fitness consequences of floral traits that were subject to natural selection.

Key words: Delphinium kamaonense var. glabrescens, phenotypic selection, phenotype evolution, fitness, flower size, trait manipulation

表1

展毛翠雀花性状间的表型相关性"

萼片长 Sepal length (mm) 萼片宽 Sepal width (mm) 花距长 Spur length (mm)
花高 Flower height (cm) 0.192 0.128 -0.035
萼片长 Sepal length (mm) 0.715*** 0.569***
萼片宽 Sepal width (mm) 0.483***

表2

展毛翠雀花特征的主成分分析"

载荷 Loading
PC1 PC2 PC3
萼片长Sepal length 0.818 0.388 0.152
萼片宽Sepal width 0.936 0.171 0.031
花距长Spur length 0.309 0.944 -0.044
花高Flower height 0.091 -0.027 0.994
解释方差
Percentage variance explained (%)
41.22% 26.77% 25.35%

图1

展毛翠雀花处理对昆虫访问频率的影响"

表3

通过雌性适合度估计展毛翠雀花特征及其主成分受到的表型选择。N = 50; ** P < 0.01; * P < 0.05; ? P < 0.1."

线性选择差
Linear selection differential (Mean ± SE)
线性选择梯度
Linear selection gradient (Mean ± SE)
花特征 Floral traits 萼片长 Sepal length 0.284 ± 0.058? -0.017 ± 0.071
萼片宽 Sepal width 0.286 ± 0.072? 0.024 ± 0.068
花距长 Spur length 0.438 ± 0.055** 0.143 ± 0.059*
花高 Flower height 0.184 ± 0.064 0.065 ± 0.05
花特征主成分
Floral trait components (PCs)
PC1 0.159 ± 0.051 0.058 ± 0.047
PC2 0.242 ± 0.065 0.131 ± 0.047**
PC3 0.174 ± 0.064 0.057 ± 0.049
[1] Aigner PA ( 2005) Variation in pollination performance gradients in a Dudleya species complex: Can generalization promote floral divergence? Functional Ecology, 19, 681-689.
[2] Alexandersson R, Johnson SD ( 2002) Pollinator-mediated selection on floral tube length in a hawkmoth-pollinated Gladiolus (Iridaceae). Proceedings of the Royal Society B: Biological Sciences, 269, 631-636.
[3] Bloch D, Erhardt A ( 2008) Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology, 89, 2453-2460.
[4] Boberg E, Ågren J ( 2009) Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Functional Ecology, 23, 1022-1028.
[5] Campbell DR ( 2009) Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 103, 1557-1566.
[6] Campbell DR, Waser NM, Price MV ( 1996) Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Aquatic Ecology, 77, 1463-1472.
[7] Clements FE, Long FL ( 1923) 5. Pollinators and flowers visited & 6. flowers and their visitors. In: Experimental Pollination: An Outline of the Ecology of Flowers and Insects, pp. 249- 261. Carnegie Institute of Washington Publication, Utah State University, Logan.
[8] Cuartas-Domínguez M, Medel R ( 2010) Pollinator-mediated selection and experimental manipulation of the flower phenotype in Chloraea bletioides. Functional Ecology, 24, 1219-1227.
[9] Darwin CR ( 1862) On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by Insects, and on the Good Effects of Intercrossing, pp. 365. John Murray, London.
[10] Dudash MR, Hassler C, Stevens PM, Fenster CB ( 2011) Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. American Journal of Botany, 98, 275-282.
[11] Ellis AG, Johnson SD ( 2010) Gender differences in the effects of floral spur length manipulation on fitness in a hermaphrodite orchid. International Journal of Plant Sciences, 171, 1010-1019.
[12] Fenster CB, Armbruster WS, Dudash MR ( 2009) Specialization of flowers: Is floral orientation an overlooked first step? New Phytologist, 183, 502-506.
[13] Fenster CB, Cheely G, Dudash MR, Reynolds RT ( 2006) Nectar reward and advertisement in hummingbird-pollinated Silene virginica (Caryophyllaceae). American Journal of Botany, 93, 1800-1807.
[14] Harder LD, Johnson SD ( 2009) Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytologist, 183, 530-545.
[15] Herrera CM ( 2001) Deconstructing a floral phenotype: Do pollinators select for corolla integration in Lavandula latifolia? Journal of Evolutionary Biology, 14, 574-584.
[16] Herrera CM, Castellanos MC, Medrano M, Harder LD, Barrett SCH ( 2006) Geographical context of floral evolution: Towards an improved research programme in floral diversification. In: Ecology and Evolution of Flowers, pp. 278-294. Oxford University Press, Oxford.
[17] Johnson SD, Steiner KE ( 1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 51, 45-53.
[18] Kay KM, Sargent RD ( 2009) The role of animal pollination in plant speciation: Integrating ecology, geography, and genetics. Annual Review of Ecology, Evolution and Systematics, 40, 637-656.
[19] Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D ( 2001) The strength of phenotypic selection in natural populations. The American Naturalist, 157, 245-261.
[20] Klinkhamer PGL, de Jong TJ ( 1993) Attractiveness to pollinators: A plant’s dilemma. Oikos, 66, 180-184.
[21] Lande R, Arnold SJ ( 1983) The measurement of selection on correlated characters. Evolution, 37, 1210-1226.
[22] Maad J ( 2000) Phenotypic selection in hawkmoth-pollinated Platanthera bifolia: Targets and fitness surfaces. Evolution, 54, 112-123.
[23] Meléndez-Ackerman E, Campbell DR ( 1998) Adaptive significance of flower color and inter-trait correlations in an Ipomopsis hybrid zone. Evolution, 52, 1293-1303.
[24] Nilsson LA ( 1988) The evolution of flowers with deep corolla tubes. Nature, 334, 147-149.
[25] O’Connell LM, Johnston MO ( 1998) Male and female pollination success in a deceptive orchid, a selection study. Ecology, 79, 1246-1260.
[26] Reynolds RJ, Dudash MR, Fenster CB ( 2010) Multi-year study of multivariate linear and nonlinear phenotypic selection on floral traits of hummingbird-pollinated Silene virginica. Evolution, 64, 358-369.
[27] Schemske DW, Bradshaw HD ( 1999) Pollinator preference and the evolution of floral traits in monkey flowers (Mimulus). Proceedings of the National Academy of Sciences, USA, 96, 11910-11915.
[28] Sletvold N, Grindeland JM, Ågren J ( 2010) Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica. New Phytologist, 188, 385-392.
[29] Wang XJ, Zhang LC, Zhao ZG ( 2010) The pattern of seed reproduction and its response to resources in Pedicularis semitorta individuals. Acta Prataculturae Sinica, 19, 236-242. (in Chinese with English abstract)
[ 王晓娟, 张龙冲, 赵志刚 ( 2010) 半扭卷马先蒿个体内的种子生产模式及其对资源的响应. 草业学报, 19, 236-242.]
[30] Zhang C, Zha SQ, Yang YP, Duan YW ( 2012) Effects of the yellow barbs of the staminodes on reproductive success of Delphinium caeruleum (Ranunculaceae). Biodiversity Science, 20, 348-353. (in Chinese with English abstract)
[ 张婵, 查绍琴, 杨永平, 段元文 ( 2012) 蓝翠雀花退化雄蕊上的黄色髯毛对其繁殖成功的影响. 生物多样性, 20, 348-353.]
[31] Zhao ZG, Lu NN, Conner JK ( 2016) Adaptive pattern of nectar volume within inflorescences: Bumblebee foraging behavior and pollinator-mediated natural selection. Scientific Reports, 6, 34499.
[32] Zhao ZG, Huang SQ ( 2013) Differentiation of floral traits associated with pollinator preference in a generalist-pollinated herb, Trollius ranunculoides (Ranunculaceae). International Journal of Plant Sciences, 174, 637-646.
[33] Zhao ZG, Wang YK ( 2015) Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLoS ONE, 10, e0118299.
[1] 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. (2019) 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史. 生物多样性, 27(4): 433-438.
[2] 胡文昭, 赵骥民, 张彦文. (2019) 二态混合交配系统的适合度优势及其维持机制研究进展. 生物多样性, 27(4): 468-474.
[3] 储诚进, 王酉石, 刘宇, 蒋林, 何芳良. (2017) 物种共存理论研究进展. 生物多样性, 25(4): 345-354.
[4] 蒋裕良, 白坤栋, 郭屹立, 王斌, 李冬兴, 李先琨, 刘志尚. (2016) 北热带喀斯特森林木本植物花性状及其生境分异. 生物多样性, 24(2): 148-156.
[5] 张茜, 赵成章, 董小刚, 马小丽, 侯兆疆, 李钰. (2014) 高寒退化草地狼毒种群不同海拔花大小-数量的权衡关系. 植物生态学报, 38(5): 452-459.
[6] 张婵, 查绍琴, 杨永平, 段元文. (2012) 蓝翠雀花退化雄蕊上的黄色髯毛对其繁殖成功的影响. 生物多样性, 20(3): 348-353.
[7] 刘乐乐, 刘左军, 杜国祯, 赵志刚. (2012) 毛茛状金莲花不同花期的花特征和访花昆虫的变化及表型选择. 生物多样性, 20(3): 317-323.
[8] 谭小梅, 周志春, 金国庆, 张一. (2011) 马尾松二代无性系种子园子代父本分析及花粉散布. 植物生态学报, 35(9): 937-945.
[9] 卢宝荣, 夏辉, 汪魏, 杨箫. (2010) 天然杂交与遗传渐渗对植物入侵性的影响. 生物多样性, 18(6): 577-589.
[10] 冯源恒;李火根*;张红莲. (2010) 鹅掌楸配子选择与雄性繁殖适合度. 植物学报, 45(01): 52-58.
[11] 卢宝荣, 夏辉, 杨箫, 金鑫, 刘苹, 汪魏. (2009) 杂交-渐渗进化理论在转基因逃逸及其环境风险评价和研究中的意义. 生物多样性, 17(4): 362-377.
[12] 汪洋, 杜国祯, 郭淑青, 赵志刚. (2009) 风毛菊花序、种子大小和数量之间的权衡: 资源条件的影响. 植物生态学报, 33(4): 681-688.
[13] 高江云, 杨自辉, 李庆军. (2009) 毛姜花原变种花寿命对两性适合度的影响. 植物生态学报, 33(1): 89-96.
[14] 赵学杰, 谭敦炎. (2007) 种子植物的选择性败育及其进化生态意义. 植物生态学报, 31(6): 1007-1018.
[15] 宋小玲, 皇甫超河, 强胜. (2007) 抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动. 植物生态学报, 31(4): 729-737.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed