生物多样性 ›› 2018, Vol. 26 ›› Issue (10): 1127-1132.doi: 10.17520/biods.2018081

• 研究报告 • 上一篇    

三江平原土壤动物群落多样性对CO2浓度升高的响应

伍一宁1, 2, 王贺1, 钟海秀2, 许楠2, 李金博2, 王继丰2, 倪红伟2, *(), 邹红菲1, *()   

  1. 1 (东北林业大学野生动物资源学院, 哈尔滨 150040)
    2 (黑龙江省科学院自然与生态研究所, 哈尔滨 150040)
  • 收稿日期:2018-03-19 接受日期:2018-06-13 出版日期:2018-10-20
  • 通讯作者: 倪红伟,邹红菲 E-mail:nihongwei2000@163.com;hongfeizou@163.com
  • 作者简介:# 共同第一作者
  • 基金项目:
    国家自然科学基金(31500323, 31370426)和黑龙江省科学院青年创新基金(CXMS2018ZR01)

The response of diverse soil fauna communities to elevated CO2 concentrations in Sanjiang Plain

Yining Wu1, 2, He Wang1, Haixiu Zhong2, Nan Xu2, Jinbo Li2, Jifeng Wang2, Hongwei Ni2, *(), Hongfei Zou1, *()   

  1. 1 College of Wildlife Resources, Northeast Forestry University, Harbin 150040
    2 Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040
  • Received:2018-03-19 Accepted:2018-06-13 Online:2018-10-20
  • Contact: Ni Hongwei,Zou Hongfei E-mail:nihongwei2000@163.com;hongfeizou@163.com
  • About author:# Co-first authors

为研究大气CO2浓度升高条件下土壤动物的响应, 本文采用开顶式气室(OTC)控制大气CO2浓度, 设置了3个梯度, 分别为低浓度370 ppm背景CO2 (AC)、中浓度550 ppm CO2 (EC1)和高浓度700 ppm CO2 (EC2)。于2017年秋季取样并用改良Tullgren干漏斗法和Baermann湿漏斗分离土壤动物。结果表明: (1)共捕获土壤动物6,268头, 隶属于7纲15目, 优势类群为甲螨亚目, 占捕获量的88.13%; 常见类群为弹尾目和双翅目幼虫, 合计占捕获量的9%。不同CO2浓度水平下, 优势类群(甲螨亚目)和常见类群(弹尾目、双翅目幼虫)相同, 但是稀有类群存在一定差异。(2) CO2浓度升高显著增加了甲螨亚目的类群数和个体密度, 显著降低了弹尾目的类群数和个体密度, 对其他土壤动物无显著影响。(3)三江平原不同浓度条件下土壤动物的Shannon-Wiener多样性指数、Pielou均匀度指数均为AC > EC1 > EC2, 而优势度指数为EC2 > EC1 > AC, 丰富度指数为AC > EC2 > EC1。研究表明, 气候变化有可能影响土壤动物的群落结构以及土壤动物的多样性。

关键词: 三江平原, 土壤动物, CO2浓度升高, 生物多样性

The effect of elevated atmospheric CO2 concentrations was investigated on soil fauna communities, controlling the concentrations at 370, 550 and 700 ppm in open top chambers in Sanjiang Plain. Samples were taken and separated by Tullgren or Baermann funnel methods in autumn 2017. Our results showed that: (1) 6,268 individuals belonging to seven classes and 15 orders were collected. Oribatida was the dominant group, accounting for 88.13% of the total individuals. Collembola and Diptera larvae were the other most common groups, accounting for 9% in total, respectively. Different groups varied in their responses to elevated CO2 concentrations. Oribatida was the dominant group. Collembola and Diptera larvae were the most common groups in AC, EC1 and EC2, but rare groups also differed in AC, EC1 and EC2. (2) The elevated CO2 concentration significantly increased the density of Oribatida, but reduced the density of Collembola. However, no other soil fauna were significantly affected. (3) The Shannon-Wiener index and the Pielou index of soil fauna exhibited the order of AC > EC1 > EC2, the Simpson index showed the order of EC2 > EC1 > AC, and the Margalef index showed the order of AC > EC2 > EC1. Our results indicate that the soil fauna community composition and diversity might be affected by climate change.

Key words: Sanjiang Plain, soil fauna, elevated CO2 concentration, biodiversity

表1

不同CO2浓度处理下土壤动物群落组成和个体密度(ind./m2)。AC: 370 ppm CO2; EC1: 550 ppm CO2; EC2: 700 ppm CO2。"

AC EC1 EC2
密度 Density 优势度
Dominance
密度 Density 优势度
Dominance
密度 Density 优势度
Dominance
弹尾目
Collembola
7.98% ++ 5.63% ++ 2.53% ++
甲螨亚目 Oribatida 82.32% +++ 86.00% +++ 92.88% +++
双翅目幼虫 Diptera larvae 6.63% ++ 4.81% ++ 2.28% ++
蜘蛛目
Araneae
0.06% + 0.16% + 0.14% +
鞘翅目幼虫
Coleptera
larvae
0.68% + 0.55% + 0.25% +
同翅目
Homoptera
0.49% + 0.27% + 0.11% +
线蚓科
Enchytraeidae
0.49% + 0.38% + 0.21% +
原尾纲
Protura
0.06% + - - - -
缨翅目
Thysanoptera
0.06% + - - 0.04% +
中气门亚目 Mesostigmata 0.80% + 0.33% + 0.11% +
啮虫目
Psocoptera
0.06% + 0.33% + 0.14% +
绒螨科
Trombidformes
0.06% + 0.16% + 0.18% +
线虫 Nemata 0.06% + 0.16% + 0.78% +
鞘翅目成虫
Coleptera imago
0.18% + 0.60% + 0.28% +
蜚蠊目
Blattoptera
0.06% + 0.05% + 0.04% +
正蚓目
Lumbricida
- - - - 0.04% +
双翅目成虫
Diptera imago
- - 0.55% + - -

图1

三江平原不同CO2浓度处理下土壤动物优势类群类群数和密度。AC: 370 ppm CO2; EC1: 550 ppm CO2; EC2: 700 ppm CO2。不同小写字母表示不同处理之间个体密度或类群数有显著差异(P < 0.05)。"

图2

三江平原不同CO2浓度处理下土壤动物群落的生态多样性指数(平均值 ± 标准差)。AC: 370 ppm CO2; EC1: 550 ppm CO2; EC2: 700 ppm CO2。不同小写字母表示不同处理之间多样性指数有显著差异(P < 0.05)。"

[1] Arora VK, Boer GJ, Christian JR, Curry CL, Denman KL, Zahariev K, Flato GM, Scinocca JF, Merryfield WJ, Lee WG (2009) The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the earth system model. Journal of Climate, 22, 6066-6088.
[2] Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. Journal of Climate, 26, 5289-5314.
[3] Bardgett RD, Wardle DA (2010) Aboveground-Belowground Linkages:Biotic Interactions, Ecosystem Processes and Global Change. Oxford University Press,Oxford.
[4] Bartelt-Ryser J, Joshi J, Schmid B (2005) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspective in Plant Ecology, Evolution and Systematics, 7, 27-49.
[5] Bever JD (2003) Soil community feedback and the coexistence of competitors: Conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
[6] Blagodatskaya E, Blagodatsky S, Dorodnikov M (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: Results of three CO2 enrichment experiments. Global Change Biology, 16, 836-848.
[7] Blankinship JC, Niklaus PA, Hungate BA (2011) A meta- analysis of responses of soil biota to global change. Oecologia, 165, 553-565.
[8] Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variablity. Nature, 494, 341-344.
[9] D’Annibale A, Larsen T, Sechi V, Cortet J, Strandberg B, Vincze E, Filser J, Audisio PA, Krogh PH (2015) Influence of elevated CO2 and GM barley on a soil mesofauna community in a mesocosm test system. Soil Biology & Biochemistry, 84, 127-136.
[10] Drigo B, Pijl AS, Duyts H (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, USA, 107, 10938-10942.
[11] Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18, 435-447.
[12] Field C, Jackson R, Mooney H (1995) Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell and Environment, 18, 1214-1225.
[13] Frouz J, Novakova A, Jones TH (2002) The potential effect of high atmospheric CO2 on soil fungi-invertebrate interactions. Global Change Biology, 8, 339-344.
[14] Heemsbergen DA, Berg MP, Loreau M, Van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306, 1019-1020.
[15] Jones D, Nguyen C, Finlay R (2009) Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant and Soil, 321, 5-33.
[16] Li Q, Wang P (2002) Current situation and prospect of elevated atmospheric CO2 effects on soil nematodes. Chinese Journal of Applied Ecology, 13, 1349-1351. (in Chinese with English abstract)
[李琪, 王朋 (2002) 开放式空气CO2浓度增高对土壤线虫影响的研究现状与展望. 应用生态学报, 13, 1349-1351.]
[17] Loranger GI, Pregitzer KS, King JS (2004) Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biology & Biochemistry, 36, 1521-1524.
[18] Ma KP, Liu YM (1994) Measurement of biotic community diversity. I. α diversity (Part 2). Biodiversity Science, 2, 231-239. (in Chinese)
[马克平, 刘玉明 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(下). 生物多样性, 2, 231-239.]
[19] Ni HW, Li J (1999) Biological Diversity in Honghe Nature Reserve. Heilongjiang Scientific Press, Harbin. (in Chinese)
[倪红伟, 李君 (1999) 洪河自然保护区生物多样性. 黑龙江科技出版社, 哈尔滨.]
[20] Okada H, Sakai H, Tokida T, Usui Y, Nakamura H, Hasegawa T (2014) Elevated temperature has stronger effects on the soil food web of a flooded paddy than does CO2. Soil Biology & Biochemistry, 70, 166-175.
[21] Piao SL, Fang JY, Huang Y (2010) The carbon balance of terrestrial ecosystem in China. China Basic Science, 12(2), 20-22, 65. (in Chinese with English abstract)
[朴世龙, 方精云, 黄耀 (2010) 中国陆地生态系统碳收支. 中国基础科学, 12(2), 20-22, 65.]
[22] Reich PB (2009) Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 326, 1399-1402.
[23] Reich PB, Hobbie SE, Lee T (2006) Nitrogen limitation constrains sustainability of ecosystem response. Nature, 440, 922-925.
[24] Reich PB, Knops J, Tilman D (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 410, 809-810.
[25] Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract)
[邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.]
[26] Sticht C, Schrader S, Giesemann A, Weigel HJ (2006) Effects of elevated atmospheric CO2 and N fertilization on abundance, diversity and C-isotopic signature of collembolan communities in arable soil. Applied Soil Ecology, 34, 219-229.
[27] Sun LJ, Qi YC, Dong YS, Peng Q, He YT, Liu XC, Jia JQ, Cao CC (2012) Research progresses on the effects of global change on microbial community diversity of grassland soils. Progress in Geography, 31, 1715-1723. (in Chinese with English abstract)
[孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛 (2012) 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 31, 1715-1723.]
[28] Van Veen JA, Lijeroth E, Lekkerkerk LJA, Van DGSC (1991) Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecological Applications, 1, 175-181.
[29] Wardle DA, Verboef HA, Clarholm M (1998) Tropic relationships in the soil microfood-web: Predicting the responses to a changing global environment. Global Change Biology, 4, 713-727.
[30] Xu GL, Fu SL, Schleppi P, Li MH (2013) Responses of soil Collembola to long-term atmospheric CO2 enrichment in a mature temperate forest. Environmental Pollution, 173, 23-28.
[31] Yin WY (1992) Subtropical Soil Animals of China. Science Press, Beijing. (in Chinese)
[尹文英 (1992) 中国亚热带土壤动物. 科学出版社, 北京.]
[32] Yin WY (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese)
[尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.]
[1] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[3] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[4] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[5] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[6] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[7] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. (2019) 生物多样性相关传统知识研究热点与前沿的可视化分析. 生物多样性, 27(7): 716-727.
[8] 孔嘉鑫, 张昭臣, 张健. (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27(7): 796-812.
[9] 张渊媛. (2019) 生物多样性相关传统知识的国际保护及中国应对策略. 生物多样性, 27(7): 708-715.
[10] 曹宁, 薛达元. (2019) 论壮族传统文化对生物多样性的保护: 以广西靖西市为例. 生物多样性, 27(7): 728-734.
[11] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[12] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[13] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27(6): 648-657.
[14] 刘艳, 杨钰爽. (2019) 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性. 生物多样性, 27(6): 677-682.
[15] 李晗溪, 黄雪娜, 李世国, 战爱斌. (2019) 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警. 生物多样性, 27(5): 491-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed